umtrx: checkin original cal app for tx DC cal work

This commit is contained in:
Josh Blum
2014-08-18 11:07:37 -07:00
parent 7182e3d199
commit 06490f377e
4 changed files with 552 additions and 11 deletions

View File

@@ -136,14 +136,4 @@ install(
DESTINATION lib${LIB_SUFFIX}/uhd/modules
)
########################################################################
# Install the UmTRX utils
########################################################################
INSTALL(PROGRAMS
utils/umtrx_net_burner
DESTINATION bin
)
add_executable(umtrx_test_chains utils/umtrx_test_chains.cpp)
target_link_libraries(umtrx_test_chains ${UMTRX_LIBRARIES})
install(TARGETS umtrx_test_chains DESTINATION bin)
add_subdirectory(utils)

15
host/utils/CMakeLists.txt Normal file
View File

@@ -0,0 +1,15 @@
########################################################################
# Build and Install the UmTRX utils
########################################################################
INSTALL(PROGRAMS
umtrx_net_burner
DESTINATION bin
)
add_executable(umtrx_test_chains umtrx_test_chains.cpp)
target_link_libraries(umtrx_test_chains ${UMTRX_LIBRARIES})
install(TARGETS umtrx_test_chains DESTINATION bin)
add_executable(umtrx_cal_tx_dc_offset umtrx_cal_tx_dc_offset.cpp)
target_link_libraries(umtrx_cal_tx_dc_offset ${UMTRX_LIBRARIES})
install(TARGETS umtrx_cal_tx_dc_offset DESTINATION bin)

View File

@@ -0,0 +1,300 @@
//
// Copyright 2010 Ettus Research LLC
// Copyright 2012 Fairwaves LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "usrp_cal_utils.hpp"
#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/paths.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
#include <boost/thread/thread.hpp>
#include <boost/math/special_functions/round.hpp>
#include <iostream>
#include <complex>
#include <cmath>
#include <ctime>
namespace po = boost::program_options;
/***********************************************************************
* Transmit thread
**********************************************************************/
static void tx_thread(uhd::usrp::multi_usrp::sptr usrp, const double tx_wave_ampl){
uhd::set_thread_priority_safe();
//create a transmit streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);
//setup variables and allocate buffer
uhd::tx_metadata_t md;
md.has_time_spec = false;
std::vector<samp_type> buff(tx_stream->get_max_num_samps()*10);
//values for the wave table lookup
wave_table table(tx_wave_ampl);
//fill buff and send until interrupted
while (not boost::this_thread::interruption_requested()){
for (size_t i = 0; i < buff.size(); i++){
buff[i] = samp_type(0,0);// table(index += step);
}
tx_stream->send(&buff.front(), buff.size(), md);
}
//send a mini EOB packet
md.end_of_burst = true;
tx_stream->send("", 0, md);
}
/***********************************************************************
* Tune RX and TX routine
**********************************************************************/
static double tune_rx_and_tx(uhd::usrp::multi_usrp::sptr usrp, const double tx_lo_freq, const double rx_offset){
//tune the transmitter with no cordic
uhd::tune_request_t tx_tune_req(tx_lo_freq);
tx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
tx_tune_req.dsp_freq = 0;
usrp->set_tx_freq(tx_tune_req);
//tune the receiver
usrp->set_rx_freq(uhd::tune_request_t(usrp->get_tx_freq(), rx_offset));
return usrp->get_tx_freq();
}
/***********************************************************************
* Main
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
std::string args;
double tx_wave_freq, tx_wave_ampl, rx_offset;
double freq_start, freq_stop, freq_step;
size_t nsamps;
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("verbose", "enable some verbose")
("debug_raw_data", "save raw captured signals to files")
("args", po::value<std::string>(&args)->default_value(""), "device address args [default = \"\"]")
("tx_wave_freq", po::value<double>(&tx_wave_freq)->default_value(50e3), "Transmit wave frequency in Hz")
("tx_wave_ampl", po::value<double>(&tx_wave_ampl)->default_value(0.7), "Transmit wave amplitude in counts")
("rx_offset", po::value<double>(&rx_offset)->default_value(1e6), "RX LO offset from the TX LO in Hz")
("freq_start", po::value<double>(&freq_start), "Frequency start in Hz (do not specify for default)")
("freq_stop", po::value<double>(&freq_stop), "Frequency stop in Hz (do not specify for default)")
("freq_step", po::value<double>(&freq_step)->default_value(default_freq_step), "Step size for LO sweep in Hz")
("nsamps", po::value<size_t>(&nsamps)->default_value(default_num_samps), "Samples per data capture")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("USRP Generate TX DC Offset Calibration Table %s") % desc << std::endl;
std::cout <<
"This application measures leakage between RX and TX on an XCVR daughterboard to self-calibrate.\n"
<< std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
//set the antennas to cal
if (not uhd::has(usrp->get_rx_antennas(), "CAL") or not uhd::has(usrp->get_tx_antennas(), "CAL")){
throw std::runtime_error("This board does not have the CAL antenna option, cannot self-calibrate.");
}
usrp->set_rx_antenna("CAL");
usrp->set_tx_antenna("CAL");
//set optimum defaults
set_optimum_defaults(usrp);
//create a receive streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
//create a transmitter thread
boost::thread_group threads;
threads.create_thread(boost::bind(&tx_thread, usrp, tx_wave_ampl));
//re-usable buffer for samples
std::vector<samp_type> buff;
//store the results here
std::vector<result_t> results;
const uhd::fs_path tx_fe_path = "/mboards/0/dboards/A/tx_frontends/0";
uhd::property<uint8_t> &dc_i_prop = usrp->get_device()->get_tree()->access<uint8_t>(tx_fe_path / "lms6002d/tx_dc_i/value");
uhd::property<uint8_t> &dc_q_prop = usrp->get_device()->get_tree()->access<uint8_t>(tx_fe_path / "lms6002d/tx_dc_q/value");
if (not vm.count("freq_start")) freq_start = usrp->get_tx_freq_range().start() + 50e6;
if (not vm.count("freq_stop")) freq_stop = usrp->get_tx_freq_range().stop() - 50e6;
for (double tx_lo_i = freq_start; tx_lo_i <= freq_stop; tx_lo_i += freq_step){
const double tx_lo = tune_rx_and_tx(usrp, tx_lo_i, rx_offset);
//frequency constants for this tune event
const double actual_rx_rate = usrp->get_rx_rate();
const double actual_tx_freq = usrp->get_tx_freq();
const double actual_rx_freq = usrp->get_rx_freq();
const double bb_dc_freq = actual_tx_freq - actual_rx_freq;
if (vm.count("verbose")) printf("actual_rx_rate = %0.2f MHz\n", actual_rx_rate/1e6);
if (vm.count("verbose")) printf("actual_tx_freq = %0.2f MHz\n", actual_tx_freq/1e6);
if (vm.count("verbose")) printf("actual_rx_freq = %0.2f MHz\n", actual_rx_freq/1e6);
if (vm.count("verbose")) printf("bb_dc_freq = %0.2f MHz\n", bb_dc_freq/1e6);
//bounds and results from searching
int dc_i_start, dc_i_stop, dc_i_step;
int dc_q_start, dc_q_stop, dc_q_step;
double lowest_offset;
int best_dc_i = 128, best_dc_q = 128;
//capture initial uncorrected value
dc_i_prop.set(best_dc_i);
dc_q_prop.set(best_dc_q);
capture_samples(usrp, rx_stream, buff, nsamps);
const double initial_dc_dbrms = compute_tone_dbrms(buff, bb_dc_freq/actual_rx_rate);
lowest_offset = initial_dc_dbrms;
if (vm.count("verbose")) printf("initial_dc_dbrms = %2.0f dB\n", initial_dc_dbrms);
if (vm.count("debug_raw_data")) write_samples_to_file(buff, "initial_samples.dat");
for (size_t i = 0; i < 10; i++){
if (vm.count("verbose")) printf(" iteration %zu\n", i);
bool has_improvement = false;
switch (i) {
case 0:
dc_i_start = 0;
dc_i_stop = 256;
dc_q_start = 0;
dc_q_stop = 256;
dc_i_step = 10;
dc_q_step = 10;
break;
case 1:
dc_i_start = best_dc_i - 15;
dc_i_stop = best_dc_i + 15;
dc_q_start = best_dc_q - 15;
dc_q_stop = best_dc_q + 15;
dc_i_step = 1;
dc_q_step = 1;
break;
default:
dc_i_start = best_dc_i - 3;
dc_i_stop = best_dc_i + 3;
dc_q_start = best_dc_q - 3;
dc_q_stop = best_dc_q + 3;
dc_i_step = 1;
dc_q_step = 1;
break;
};
if (vm.count("verbose")) printf(" I in [%d; %d) step %d Q = %d\n",
dc_i_start, dc_i_stop, dc_i_step, best_dc_q);
dc_q_prop.set(best_dc_q);
for (int dc_i = dc_i_start; dc_i < dc_i_stop; dc_i += dc_i_step){
if (vm.count("verbose")) printf(" dc_i = %d", dc_i);
dc_i_prop.set(dc_i);
//receive some samples
capture_samples(usrp, rx_stream, buff, nsamps);
const double dc_dbrms = compute_tone_dbrms(buff, bb_dc_freq/actual_rx_rate);
if (vm.count("verbose")) printf(" dc_dbrms = %2.0f dB", dc_dbrms);
if (dc_dbrms < lowest_offset){
lowest_offset = dc_dbrms;
best_dc_i = dc_i;
has_improvement = true;
if (vm.count("verbose")) printf(" *");
if (vm.count("debug_raw_data")) write_samples_to_file(buff, "best_samples.dat");
}
if (vm.count("verbose")) printf("\n");
}
if (vm.count("verbose")) printf(" I = %d Q in [%d; %d) step %d\n",
best_dc_i, dc_q_start, dc_q_stop, dc_q_step);
dc_i_prop.set(best_dc_i);
for (int dc_q = dc_q_start; dc_q < dc_q_stop; dc_q += dc_q_step){
if (vm.count("verbose")) printf(" dc_q = %d", dc_q);
dc_q_prop.set(dc_q);
//receive some samples
capture_samples(usrp, rx_stream, buff, nsamps);
const double dc_dbrms = compute_tone_dbrms(buff, bb_dc_freq/actual_rx_rate);
if (vm.count("verbose")) printf(" dc_dbrms = %2.0f dB", dc_dbrms);
if (dc_dbrms < lowest_offset){
lowest_offset = dc_dbrms;
best_dc_q = dc_q;
has_improvement = true;
if (vm.count("verbose")) printf(" *");
if (vm.count("debug_raw_data")) write_samples_to_file(buff, "best_samples.dat");
}
if (vm.count("verbose")) printf("\n");
}
// Stop iterating if no imprevement, but do at least 3 iterations
if (!has_improvement && i>1) break;
}
if (vm.count("verbose")) printf(" best_dc_i = %d best_dc_q = %d", best_dc_i, best_dc_q);
if (vm.count("verbose")) printf(" lowest_offset = %2.0f dB delta = %2.0f dB\n", lowest_offset, initial_dc_dbrms - lowest_offset);
if (lowest_offset < initial_dc_dbrms){ //most likely valid, keep result
result_t result;
result.freq = tx_lo;
result.real_corr = best_dc_i;
result.imag_corr = best_dc_q;
result.best = lowest_offset;
result.delta = initial_dc_dbrms - lowest_offset;
results.push_back(result);
if (vm.count("verbose")){
std::cout << boost::format("TX DC: %f MHz: lowest offset %f dB, corrected %f dB") % (tx_lo/1e6) % result.best % result.delta << std::endl;
}
else std::cout << "." << std::flush;
}
}
std::cout << std::endl;
//stop the transmitter
threads.interrupt_all();
threads.join_all();
store_results(usrp, results, "TX", "tx", "lms_dc");
return 0;
}

View File

@@ -0,0 +1,236 @@
//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include <uhd/utils/paths.hpp>
#include <uhd/property_tree.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/usrp/dboard_eeprom.hpp>
#include <boost/filesystem.hpp>
#include <iostream>
#include <vector>
#include <complex>
#include <cmath>
#include <fstream>
namespace fs = boost::filesystem;
struct result_t{double freq, real_corr, imag_corr, best, delta;};
typedef std::complex<float> samp_type;
/***********************************************************************
* Constants
**********************************************************************/
static const double tau = 6.28318531;
static const size_t wave_table_len = 8192;
static const size_t num_search_steps = 5;
static const size_t num_search_iters = 7;
static const double default_freq_step = 1e6;
static const size_t default_num_samps = 10000;
/***********************************************************************
* Set standard defaults for devices
**********************************************************************/
static inline void set_optimum_defaults(uhd::usrp::multi_usrp::sptr usrp){
uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
const uhd::fs_path mb_path = "/mboards/0";
const std::string mb_name = tree->access<std::string>(mb_path / "name").get();
if (mb_name.find("USRP2") != std::string::npos or mb_name.find("N200") != std::string::npos or mb_name.find("N210") != std::string::npos){
usrp->set_tx_rate(12.5e6);
usrp->set_rx_rate(12.5e6);
}
else if (mb_name.find("UMTRX") != std::string::npos){
usrp->set_tx_rate(13e6/4);
usrp->set_tx_bandwidth(5e6);
usrp->set_rx_rate(13e6/4);
usrp->set_rx_bandwidth(5e6);
}
else if (mb_name.find("B100") != std::string::npos){
usrp->set_tx_rate(4e6);
usrp->set_rx_rate(4e6);
}
else if (mb_name.find("E100") != std::string::npos or mb_name.find("E110") != std::string::npos){
usrp->set_tx_rate(4e6);
usrp->set_rx_rate(8e6);
}
else{
throw std::runtime_error("self-calibration is not supported for this hardware");
}
const uhd::fs_path tx_fe_path = "/mboards/0/dboards/A/tx_frontends/0";
const std::string tx_name = tree->access<std::string>(tx_fe_path / "name").get();
if (tx_name.find("WBX") != std::string::npos or tx_name.find("SBX") != std::string::npos){
usrp->set_tx_gain(0);
}
else if (tx_name.find("LMS6002D") != std::string::npos){
usrp->set_tx_gain(10);
}
else{
throw std::runtime_error("self-calibration is not supported for this hardware");
}
const uhd::fs_path rx_fe_path = "/mboards/0/dboards/A/tx_frontends/0";
const std::string rx_name = tree->access<std::string>(rx_fe_path / "name").get();
if (rx_name.find("WBX") != std::string::npos or rx_name.find("SBX") != std::string::npos){
usrp->set_rx_gain(25);
}
else if (rx_name.find("LMS6002D") != std::string::npos){
usrp->set_rx_gain(10);
}
else{
throw std::runtime_error("self-calibration is not supported for this hardware");
}
}
/***********************************************************************
* Sinusoid wave table
**********************************************************************/
class wave_table{
public:
wave_table(const double ampl){
_table.resize(wave_table_len);
for (size_t i = 0; i < wave_table_len; i++){
_table[i] = samp_type(std::polar(ampl, (tau*i)/wave_table_len));
}
}
inline samp_type operator()(const size_t index) const{
return _table[index % wave_table_len];
}
private:
std::vector<samp_type > _table;
};
/***********************************************************************
* Compute power of a tone
**********************************************************************/
static inline double compute_tone_dbrms(
const std::vector<samp_type > &samples,
const double freq //freq is fractional
){
//shift the samples so the tone at freq is down at DC
//and average the samples to measure the DC component
samp_type average = 0;
for (size_t i = 0; i < samples.size(); i++){
average += samp_type(std::polar(1.0, -freq*tau*i)) * samples[i];
}
return 20*std::log10(std::abs(average/float(samples.size())));
}
/***********************************************************************
* Write a dat file
**********************************************************************/
static inline void write_samples_to_file(
const std::vector<samp_type > &samples, const std::string &file
){
std::ofstream outfile(file.c_str(), std::ofstream::binary);
outfile.write((const char*)&samples.front(), samples.size()*sizeof(samp_type));
outfile.close();
}
/***********************************************************************
* Store data to file
**********************************************************************/
static void store_results(
uhd::usrp::multi_usrp::sptr usrp,
const std::vector<result_t> &results,
const std::string &XX,
const std::string &xx,
const std::string &what
){
//extract eeprom serial
uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
const uhd::fs_path db_path = "/mboards/0/dboards/A/" + xx + "_eeprom";
const uhd::usrp::dboard_eeprom_t db_eeprom = tree->access<uhd::usrp::dboard_eeprom_t>(db_path).get();
if (db_eeprom.serial.empty()) throw std::runtime_error(XX + " dboard has empty serial!");
//make the calibration file path
fs::path cal_data_path = fs::path(uhd::get_app_path()) / ".uhd";
fs::create_directory(cal_data_path);
cal_data_path = cal_data_path / "cal";
fs::create_directory(cal_data_path);
cal_data_path = cal_data_path / str(boost::format("%s_%s_cal_v0.1_%s.csv") % xx % what % db_eeprom.serial);
if (fs::exists(cal_data_path)){
fs::rename(cal_data_path, cal_data_path.string() + str(boost::format(".%d") % time(NULL)));
}
//fill the calibration file
std::ofstream cal_data(cal_data_path.string().c_str());
cal_data << boost::format("name, %s Frontend Calibration\n") % XX;
cal_data << boost::format("serial, %s\n") % db_eeprom.serial;
cal_data << boost::format("timestamp, %d\n") % time(NULL);
cal_data << boost::format("version, 0, 1\n");
cal_data << boost::format("DATA STARTS HERE\n");
cal_data << "lo_frequency, correction_real, correction_imag, measured, delta\n";
for (size_t i = 0; i < results.size(); i++){
cal_data
<< results[i].freq << ", "
<< results[i].real_corr << ", "
<< results[i].imag_corr << ", "
<< results[i].best << ", "
<< results[i].delta << "\n"
;
}
std::cout << "wrote cal data to " << cal_data_path << std::endl;
}
/***********************************************************************
* Data capture routine
**********************************************************************/
static void capture_samples(
uhd::usrp::multi_usrp::sptr usrp,
uhd::rx_streamer::sptr rx_stream,
std::vector<samp_type > &buff,
const size_t nsamps_requested
){
size_t num_rx_samps;
buff.resize(nsamps_requested);
uhd::rx_metadata_t md;
for (int i=0; i<10; i++) {
uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE);
stream_cmd.num_samps = buff.size();
stream_cmd.stream_now = true;
usrp->issue_stream_cmd(stream_cmd);
num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md);
//validate the received data
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE
&& md.error_code != uhd::rx_metadata_t::ERROR_CODE_OVERFLOW){
throw std::runtime_error(str(boost::format(
"Unexpected error code 0x%x"
) % md.error_code));
}
//we can live if all the data didnt come in
if (num_rx_samps > buff.size()/2){
buff.resize(num_rx_samps);
return;
}
if (num_rx_samps == buff.size()) break;
}
if (num_rx_samps != buff.size()){
throw std::runtime_error("did not get all the samples requested");
}
}