5 Commits

Author SHA1 Message Date
Josh Blum
6330a16b16 reset duc/ddc chain on idle 2016-04-06 01:21:17 -07:00
Kirill Zakharenko
50a1b928ec bump version to 1.0.11 2016-03-28 11:52:21 +02:00
Kirill Zakharenko
41a94769fe collectd: use 'fairwaves-monitoring' user to run plugin 2016-03-27 18:36:25 +02:00
Kirill Zakharenko
b1e80e5c27 bumped version to 1.0.10 2016-03-21 19:23:45 +01:00
Kirill Zakharenko
014e8123a3 collectd: rewritten collection script
* no longer conflicts over 'temperature' type with default types.db
* auto-adapts to any new or missing sensors
* simple! (e.g. doesn't read voltages twice)
2016-03-21 19:06:45 +01:00
7 changed files with 62 additions and 72 deletions

12
debian/changelog vendored
View File

@@ -1,3 +1,15 @@
umtrx (1.0.11) trusty; urgency=low
* collectd: use 'fairwaves-monitoring' user to run plugin
-- Kirill Zakharenko <earwin@gmail.com> Sun, 27 Mar 2016 19:37:39 +0100
umtrx (1.0.10) trusty; urgency=low
* collectd: rewritten counter collection plugin
-- Kirill Zakharenko <earwin@gmail.com> Mon, 21 Mar 2016 19:21:00 +0100
umtrx (1.0.9) trusty; urgency=low
* collectd: osmo-nitb counter collection plugin

View File

@@ -59,7 +59,11 @@ module ddc_chain
reg [WIDTH-1:0] rx_fe_i_mux, rx_fe_q_mux;
wire realmode;
wire swap_iq;
reg idle_rst;
always @(posedge clk)
idle_rst <= (rst | ~ddc_enb);
setting_reg #(.my_addr(BASE+0)) sr_0
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
.in(set_data),.out(phase_inc),.changed());
@@ -92,9 +96,7 @@ module ddc_chain
// NCO
always @(posedge clk)
if(rst)
phase <= 0;
else if(~ddc_enb)
if(idle_rst)
phase <= 0;
else
phase <= phase + phase_inc;
@@ -117,36 +119,36 @@ module ddc_chain
(.clk(clk), .in(q_cordic), .strobe_in(1'b1), .out(q_cordic_clip));
// CIC decimator 24 bit I/O
cic_strober cic_strober(.clock(clk),.reset(rst),.enable(ddc_enb),.rate(cic_decim_rate),
cic_strober cic_strober(.clock(clk),.reset(idle_rst),.enable(ddc_enb),.rate(cic_decim_rate),
.strobe_fast(1),.strobe_slow(strobe_cic) );
cic_decim #(.bw(WIDTH))
decim_i (.clock(clk),.reset(rst),.enable(ddc_enb),
decim_i (.clock(clk),.reset(idle_rst),.enable(ddc_enb),
.rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
.signal_in(i_cordic_clip),.signal_out(i_cic));
cic_decim #(.bw(WIDTH))
decim_q (.clock(clk),.reset(rst),.enable(ddc_enb),
decim_q (.clock(clk),.reset(idle_rst),.enable(ddc_enb),
.rate(cic_decim_rate),.strobe_in(1'b1),.strobe_out(strobe_cic),
.signal_in(q_cordic_clip),.signal_out(q_cic));
// First (small) halfband 24 bit I/O
small_hb_dec #(.WIDTH(WIDTH)) small_hb_i
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(ddc_enb),
(.clk(clk),.rst(idle_rst),.bypass(~enable_hb1),.run(ddc_enb),
.stb_in(strobe_cic),.data_in(i_cic),.stb_out(strobe_hb1),.data_out(i_hb1));
small_hb_dec #(.WIDTH(WIDTH)) small_hb_q
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.run(ddc_enb),
(.clk(clk),.rst(idle_rst),.bypass(~enable_hb1),.run(ddc_enb),
.stb_in(strobe_cic),.data_in(q_cic),.stb_out(),.data_out(q_hb1));
// Second (large) halfband 24 bit I/O
wire [8:0] cpi_hb = enable_hb1 ? {cic_decim_rate,1'b0} : {1'b0,cic_decim_rate};
hb_dec #(.WIDTH(WIDTH)) hb_i
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(ddc_enb),.cpi(cpi_hb),
(.clk(clk),.rst(idle_rst),.bypass(~enable_hb2),.run(ddc_enb),.cpi(cpi_hb),
.stb_in(strobe_hb1),.data_in(i_hb1),.stb_out(strobe_hb2),.data_out(i_hb2));
hb_dec #(.WIDTH(WIDTH)) hb_q
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.run(ddc_enb),.cpi(cpi_hb),
(.clk(clk),.rst(idle_rst),.bypass(~enable_hb2),.run(ddc_enb),.cpi(cpi_hb),
.stb_in(strobe_hb1),.data_in(q_hb1),.stb_out(),.data_out(q_hb2));
//scalar operation (gain of 6 bits)

View File

@@ -46,6 +46,10 @@ module duc_chain
wire [3:0] tx_femux_a, tx_femux_b;
wire enable_hb1, enable_hb2;
wire rate_change;
reg idle_rst;
always @(posedge clk)
idle_rst <= (rst | ~duc_enb);
setting_reg #(.my_addr(BASE+0)) sr_0
(.clk(clk),.rst(rst),.strobe(set_stb),.addr(set_addr),
@@ -66,13 +70,13 @@ module duc_chain
reg strobe_hb2 = 1;
cic_strober #(.WIDTH(8))
cic_strober(.clock(clk),.reset(rst),.enable(duc_enb & ~rate_change),.rate(interp_rate),
cic_strober(.clock(clk),.reset(idle_rst),.enable(duc_enb & ~rate_change),.rate(interp_rate),
.strobe_fast(1),.strobe_slow(strobe_cic_pre) );
cic_strober #(.WIDTH(2))
hb2_strober(.clock(clk),.reset(rst),.enable(duc_enb & ~rate_change),.rate(enable_hb2 ? 2 : 1),
hb2_strober(.clock(clk),.reset(idle_rst),.enable(duc_enb & ~rate_change),.rate(enable_hb2 ? 2 : 1),
.strobe_fast(strobe_cic_pre),.strobe_slow(strobe_hb2_pre) );
cic_strober #(.WIDTH(2))
hb1_strober(.clock(clk),.reset(rst),.enable(duc_enb & ~rate_change),.rate(enable_hb1 ? 2 : 1),
hb1_strober(.clock(clk),.reset(idle_rst),.enable(duc_enb & ~rate_change),.rate(enable_hb1 ? 2 : 1),
.strobe_fast(strobe_hb2_pre),.strobe_slow(strobe_hb1_pre) );
always @(posedge clk) strobe_hb1 <= strobe_hb1_pre;
@@ -81,9 +85,7 @@ module duc_chain
// NCO
always @(posedge clk)
if(rst)
phase <= 0;
else if(~duc_enb)
if(idle_rst)
phase <= 0;
else
phase <= phase + phase_inc;
@@ -102,24 +104,24 @@ module duc_chain
// but the default case inside hb_interp handles this
hb_interp #(.IWIDTH(18),.OWIDTH(18),.ACCWIDTH(WIDTH)) hb_interp_i
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.cpo(cpo),.stb_in(strobe_hb1),.data_in({bb_i, 2'b0}),.stb_out(strobe_hb2),.data_out(hb1_i));
(.clk(clk),.rst(idle_rst),.bypass(~enable_hb1),.cpo(cpo),.stb_in(strobe_hb1),.data_in({bb_i, 2'b0}),.stb_out(strobe_hb2),.data_out(hb1_i));
hb_interp #(.IWIDTH(18),.OWIDTH(18),.ACCWIDTH(WIDTH)) hb_interp_q
(.clk(clk),.rst(rst),.bypass(~enable_hb1),.cpo(cpo),.stb_in(strobe_hb1),.data_in({bb_q, 2'b0}),.stb_out(strobe_hb2),.data_out(hb1_q));
(.clk(clk),.rst(idle_rst),.bypass(~enable_hb1),.cpo(cpo),.stb_in(strobe_hb1),.data_in({bb_q, 2'b0}),.stb_out(strobe_hb2),.data_out(hb1_q));
small_hb_int #(.WIDTH(18)) small_hb_interp_i
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.stb_in(strobe_hb2),.data_in(hb1_i),
(.clk(clk),.rst(idle_rst),.bypass(~enable_hb2),.stb_in(strobe_hb2),.data_in(hb1_i),
.output_rate(interp_rate),.stb_out(strobe_cic),.data_out(hb2_i));
small_hb_int #(.WIDTH(18)) small_hb_interp_q
(.clk(clk),.rst(rst),.bypass(~enable_hb2),.stb_in(strobe_hb2),.data_in(hb1_q),
(.clk(clk),.rst(idle_rst),.bypass(~enable_hb2),.stb_in(strobe_hb2),.data_in(hb1_q),
.output_rate(interp_rate),.stb_out(strobe_cic),.data_out(hb2_q));
cic_interp #(.bw(18),.N(4),.log2_of_max_rate(7))
cic_interp_i(.clock(clk),.reset(rst),.enable(duc_enb & ~rate_change),.rate(interp_rate),
cic_interp_i(.clock(clk),.reset(idle_rst),.enable(duc_enb & ~rate_change),.rate(interp_rate),
.strobe_in(strobe_cic),.strobe_out(1),
.signal_in(hb2_i),.signal_out(i_interp));
cic_interp #(.bw(18),.N(4),.log2_of_max_rate(7))
cic_interp_q(.clock(clk),.reset(rst),.enable(duc_enb & ~rate_change),.rate(interp_rate),
cic_interp_q(.clock(clk),.reset(idle_rst),.enable(duc_enb & ~rate_change),.rate(interp_rate),
.strobe_in(strobe_cic),.strobe_out(1),
.signal_in(hb2_q),.signal_out(q_interp));

View File

@@ -2,5 +2,5 @@ TypesDB "/usr/share/collectd/umtrx.types.db"
LoadPlugin exec
<Plugin exec>
Exec "fairwaves:fairwaves" "/usr/share/umtrx/umtrx2collectd.py"
Exec "fairwaves-monitoring" "/usr/share/umtrx/umtrx2collectd.py"
</Plugin>

View File

@@ -1,5 +1 @@
Voltages1 PR1:GAUGE:0:32, PR2:GAUGE:0:32, PF1:GAUGE:0:32, PF2:GAUGE:0:32
Voltages2 Zero:GAUGE:0:32, Vin:GAUGE:0:32, VinPA:GAUGE:0:32, DCOUT:GAUGE:0:32
Temperature A:GAUGE:-40:120, B:GAUGE:-40:120
ReturnLoss C1:GAUGE:0:32, C2:GAUGE:0:32
VSWR C1:GAUGE:0:32, C2:GAUGE:0:32
sensor value:GAUGE:U:U

View File

@@ -2,74 +2,52 @@
# -*- coding: utf-8 -*-
import os
import sched,time
import sched, time
from umtrx_property_tree import umtrx_property_tree
from umtrx_vswr import umtrx_vswr
BOARD_ID = "0"
SENSORS_PATH = "/mboards/{id}/sensors".format(id=BOARD_ID)
VSWR_CALIBRATION = 0 # = TM10_VSWR_cal
HOSTNAME = os.environ['COLLECTD_HOSTNAME'] if 'COLLECTD_HOSTNAME' in os.environ else 'localhost'
INTERVAL = os.environ['COLLECTD_INTERVAL'] if 'COLLECTD_INTERVAL' in os.environ else '60'
umtrx = umtrx_property_tree()
umtrx.connect()
sensors_path = "/mboards/0/sensors"
res = umtrx.list_path_raw(sensors_path)
# ['tempA', 'tempB', 'voltagePR1', 'voltagePF1', 'voltagePR2', 'voltagePF2', 'voltagezero', 'voltageVin', 'voltageVinPA', 'voltageDCOUT']
sensors_list = res.get('result', [])
# Voltages1 PR1:GAUGE:0:32, PR2:GAUGE:0:32, PF1:GAUGE:0:32, PF2:GAUGE:0:32
# Voltages2 Zero:GAUGE:0:32, Vin:GAUGE:0:32, VinPA:GAUGE:0:32, DCOUT:GAUGE:0:32
# Temperature A:GAUGE:-40:120, B:GAUGE:-40:120,
# ReturnLoss C1:GAUGE:0:32, C2:GAUGE:0:32
# VSWR C1:GAUGE:0:32, C2:GAUGE:0:32
def publish_set(name, values):
res = [HOSTNAME, name, INTERVAL]
res.extend(values)
src = "PUTVAL \"%s/UmTRX/%s\" interval=%s N:" + ":".join(["%s"] * len(values))
print src % tuple(res)
# typically this yields: ['tempA', 'tempB', 'voltagePR1', 'voltagePF1', 'voltagePR2', 'voltagePF2', 'voltagezero', 'voltageVin', 'voltageVinPA', 'voltageDCOUT']
sensors_list = umtrx.list_path_raw(SENSORS_PATH).get("result", [])
def publish():
sets = {'Voltages1': ['VoltagePR1', 'VoltagePR2', 'VoltagePF1', 'VoltagePF2'],
'Voltages2': ['Voltagezero', 'VoltageVin', 'VoltageVinPA', 'VoltageDCOUT'],
'Temperature': ['TempA', 'TempB'], 'VSWR': ['Channel_1_VSWR', 'Channel_2_VSWR'],
'ReturnLoss': ['Channel_1_ReturnLoss', 'Channel_2_ReturnLoss']}
now = time.time()
current_sensors = {}
current_sensors = {sensor: umtrx.query_sensor_value(SENSORS_PATH + "/" + sensor) for sensor in sensors_list}
for sensor in sensors_list:
sensor_data = umtrx.query_sensor_raw(sensors_path + "/" + sensor)['result']
current_sensors[sensor_data['name']] = sensor_data['value']
for channel in ["1", "2"]:
vpf_name = "voltagePF" + channel
vpr_name = "voltagePR" + channel
# vswr_calibration = TM10_VSWR_cal
vswr_calibration = 0
if vpf_name in current_sensors and vpr_name in current_sensors:
vswr = umtrx_vswr(float(current_sensors[vpf_name]), float(current_sensors[vpr_name]), VSWR_CALIBRATION)
current_sensors["VSWR" + channel] = vswr.vswr()
current_sensors["ReturnLoss" + channel] = vswr.return_loss()
for num in [1, 2]:
vpr_name = 'voltagePR' + str(num)
vpf_name = 'voltagePF' + str(num)
if vpr_name in sensors_list and vpf_name in sensors_list:
vpr = float(umtrx.query_sensor_value(sensors_path + '/' + vpr_name))
vpf = float(umtrx.query_sensor_value(sensors_path + '/' + vpf_name))
vswr = umtrx_vswr(vpf, vpr, vswr_calibration)
current_sensors['Channel_%d_VSWR' % num] = vswr.vswr()
current_sensors['Channel_%d_ReturnLoss' % num] = vswr.return_loss()
for key, values in sets.iteritems():
publish_set(key, [current_sensors[name] for name in values])
for name, value in current_sensors.items():
print "PUTVAL {host}/umtrx-{id}/sensor-{name} interval={interval} {now}:{value}".format(
host=HOSTNAME, id=BOARD_ID, name=name, interval=INTERVAL, now=now, value=value)
s = sched.scheduler(time.time, time.sleep)
def timer_loop():
s.enter(float(INTERVAL), 1, timer_loop, ())
publish()
timer_loop()
s.run()

Binary file not shown.