// // Copyright 2010,2012 Ettus Research LLC // Copyright 2015 Fairwaves, Inc // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include "usrp_cal_utils.hpp" #include #include #include #include #include #include #include #include namespace po = boost::program_options; static const size_t num_search_steps = 5; static const size_t num_search_iters = 7; /*********************************************************************** * Main **********************************************************************/ int UHD_SAFE_MAIN(int argc, char *argv[]){ std::string args, which, serial; int verbose; int vga1_gain, vga2_gain, rx_gain; double tx_wave_freq, tx_wave_ampl, rx_offset; double freq_start, freq_stop, freq_step; size_t nsamps; po::options_description desc("Allowed options"); desc.add_options() ("help", "help message") ("verbose", "enable some verbose") ("args", po::value(&args)->default_value(""), "device address args [default = \"\"]") ("which", po::value(&which)->default_value("A"), "Which chain A or B?") ("vga1", po::value(&vga1_gain)->default_value(-20), "LMS6002D Tx VGA1 gain [-35 to -4]") ("vga2", po::value(&vga2_gain)->default_value(22), "LMS6002D Tx VGA2 gain [0 to 25]") ("rx_gain", po::value(&rx_gain)->default_value(50), "LMS6002D Rx combined gain [0 to 156]") ("tx_wave_freq", po::value(&tx_wave_freq)->default_value(50e3), "Transmit wave frequency in Hz") ("tx_wave_ampl", po::value(&tx_wave_ampl)->default_value(0.7), "Transmit wave amplitude in counts") ("rx_offset", po::value(&rx_offset)->default_value(300e3), "RX LO offset from the TX LO in Hz") ("freq_start", po::value(&freq_start), "Frequency start in Hz (do not specify for default)") ("freq_stop", po::value(&freq_stop), "Frequency stop in Hz (do not specify for default)") ("freq_step", po::value(&freq_step)->default_value(default_freq_step), "Step size for LO sweep in Hz") ("nsamps", po::value(&nsamps)->default_value(default_num_samps), "Samples per data capture") ("append", "Append measurements to the calibratoin file instead of rewriting [default=overwrite]") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); //print the help message if (vm.count("help")){ std::cout << boost::format("UmTRX Generate TX IQ Balance Calibration Table %s") % desc << std::endl; std::cout << "This application measures leakage between RX and TX using LMS6002D internal RF loopback to self-calibrate.\n" << std::endl; return EXIT_FAILURE; } verbose = vm.count("verbose"); // Create a USRP device uhd::usrp::multi_usrp::sptr usrp = setup_usrp_for_cal(args, which, serial, vga1_gain, vga2_gain, rx_gain, verbose); //create a receive streamer uhd::stream_args_t stream_args("fc32"); //complex floats uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args); //create a transmitter thread std::atomic interrupted(false); boost::thread_group threads; threads.create_thread(boost::bind(&tx_thread, usrp, tx_wave_freq, tx_wave_ampl, boost::ref(interrupted))); //re-usable buffer for samples std::vector buff; //store the results here std::vector results; uhd::property_tree::sptr tree = usrp->get_device()->get_tree(); const uhd::fs_path tx_fe_path = "/mboards/0/tx_frontends/"+which; uhd::property > &iq_prop = tree->access >(tx_fe_path / "iq_balance" / "value"); if (not vm.count("freq_start")) freq_start = usrp->get_tx_freq_range().start() + 50e6; if (not vm.count("freq_stop")) freq_stop = usrp->get_tx_freq_range().stop() - 50e6; UHD_MSG(status) << boost::format("Calibration frequency type: IQ balance") << std::endl; UHD_MSG(status) << boost::format("Calibration frequency range: %d MHz -> %d MHz") % (freq_start/1e6) % (freq_stop/1e6) << std::endl; for (double tx_lo_i = freq_start; tx_lo_i <= freq_stop; tx_lo_i += freq_step){ const double tx_lo = tune_rx_and_tx(usrp, tx_lo_i, rx_offset); //frequency constants for this tune event const double actual_rx_rate = usrp->get_rx_rate(); const double actual_tx_freq = usrp->get_tx_freq(); const double actual_rx_freq = usrp->get_rx_freq(); const double bb_tone_freq = actual_tx_freq + tx_wave_freq - actual_rx_freq; const double bb_imag_freq = actual_tx_freq - tx_wave_freq - actual_rx_freq; //capture initial uncorrected value iq_prop.set(0.0); capture_samples(rx_stream, buff, nsamps); const double initial_suppression = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate) - compute_tone_dbrms(buff, bb_imag_freq/actual_rx_rate); //bounds and results from searching std::complex best_correction; double phase_corr_start = -.3, phase_corr_stop = .3, phase_corr_step; double ampl_corr_start = -.3, ampl_corr_stop = .3, ampl_corr_step; double best_suppression = 0, best_phase_corr = 0, best_ampl_corr = 0; for (size_t i = 0; i < num_search_iters; i++){ phase_corr_step = (phase_corr_stop - phase_corr_start)/(num_search_steps-1); ampl_corr_step = (ampl_corr_stop - ampl_corr_start)/(num_search_steps-1); for (double phase_corr = phase_corr_start; phase_corr <= phase_corr_stop + phase_corr_step/2; phase_corr += phase_corr_step){ for (double ampl_corr = ampl_corr_start; ampl_corr <= ampl_corr_stop + ampl_corr_step/2; ampl_corr += ampl_corr_step){ const std::complex correction(ampl_corr, phase_corr); iq_prop.set(correction); //receive some samples capture_samples(rx_stream, buff, nsamps); const double tone_dbrms = compute_tone_dbrms(buff, bb_tone_freq/actual_rx_rate); const double imag_dbrms = compute_tone_dbrms(buff, bb_imag_freq/actual_rx_rate); const double suppression = tone_dbrms - imag_dbrms; if (suppression > best_suppression){ best_correction = correction; best_suppression = suppression; best_phase_corr = phase_corr; best_ampl_corr = ampl_corr; } }} if (verbose) std::cout << "best_phase_corr " << best_phase_corr << std::endl; if (verbose) std::cout << "best_ampl_corr " << best_ampl_corr << std::endl; if (verbose) std::cout << "best_suppression " << best_suppression << std::endl; phase_corr_start = best_phase_corr - phase_corr_step; phase_corr_stop = best_phase_corr + phase_corr_step; ampl_corr_start = best_ampl_corr - ampl_corr_step; ampl_corr_stop = best_ampl_corr + ampl_corr_step; } if (best_suppression > 30){ //most likely valid, keep result result_t result; result.freq = tx_lo; result.real_corr = best_correction.real(); result.imag_corr = best_correction.imag(); result.best = best_suppression; result.delta = best_suppression - initial_suppression; results.push_back(result); if (verbose){ std::cout << boost::format("TX IQ: %f MHz: best suppression %f dB, corrected %f dB") % (tx_lo/1e6) % result.best % result.delta << std::endl; } else std::cout << "." << std::flush; } } std::cout << std::endl; //stop the transmitter interrupted = true; threads.join_all(); store_results(usrp, results, "tx", "iq", vm.count("append")); return EXIT_SUCCESS; }