// // Copyright 2010 Ettus Research LLC // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace fs = boost::filesystem; struct result_t{double freq, real_corr, imag_corr, best, delta;}; typedef std::complex samp_type; /*********************************************************************** * Constants **********************************************************************/ static const double tau = 6.28318531; static const size_t wave_table_len = 8192; static const double default_freq_step = 1e6; static const size_t default_num_samps = 10000; /*********************************************************************** * Sinusoid wave table **********************************************************************/ class wave_table{ public: wave_table(const double ampl){ _table.resize(wave_table_len); for (size_t i = 0; i < wave_table_len; i++){ _table[i] = samp_type(std::polar(ampl, (tau*i)/wave_table_len)); } } inline samp_type operator()(const size_t index) const{ return _table[index % wave_table_len]; } private: std::vector _table; }; /*********************************************************************** * Compute power of a tone **********************************************************************/ static inline double compute_tone_dbrms( const std::vector &samples, const double freq //freq is fractional ){ //shift the samples so the tone at freq is down at DC //and average the samples to measure the DC component samp_type average = 0; for (size_t i = 0; i < samples.size(); i++){ average += samp_type(std::polar(1.0, -freq*tau*i)) * samples[i]; } return 20*std::log10(std::abs(average/float(samples.size()))); } /*********************************************************************** * Write a dat file **********************************************************************/ static inline void write_samples_to_file( const std::vector &samples, const std::string &file ){ std::ofstream outfile(file.c_str(), std::ofstream::binary); outfile.write((const char*)&samples.front(), samples.size()*sizeof(samp_type)); outfile.close(); } /*********************************************************************** * Retrieve d'board serial **********************************************************************/ static std::string get_serial( uhd::usrp::multi_usrp::sptr usrp, const std::string &tx_rx ){ uhd::property_tree::sptr tree = usrp->get_device()->get_tree(); // Will work on 1st subdev, top-level must make sure it's the right one uhd::usrp::subdev_spec_t subdev_spec = usrp->get_rx_subdev_spec(); const uhd::fs_path db_path = "/mboards/0/dboards/" + subdev_spec[0].db_name + "/" + tx_rx + "_eeprom"; const uhd::usrp::dboard_eeprom_t db_eeprom = tree->access(db_path).get(); return db_eeprom.serial; } /*********************************************************************** * Convert integer calibration values to floats **********************************************************************/ static double dc_offset_int2double(uint8_t corr) { return (corr-128)/128.0; } /*********************************************************************** * Store data to file **********************************************************************/ static void store_results( uhd::usrp::multi_usrp::sptr usrp, const std::vector &results, const std::string &rx_tx, // "tx" or "rx" const std::string &what, // Type of test, e.g. "iq" bool append ){ std::ofstream cal_data; bool write_header=true; std::string rx_tx_upper = boost::to_upper_copy(rx_tx); std::string serial = get_serial(usrp, rx_tx); //make the calibration file path fs::path cal_data_path = fs::path(uhd::get_app_path()) / ".uhd"; fs::create_directory(cal_data_path); cal_data_path = cal_data_path / "cal"; fs::create_directory(cal_data_path); cal_data_path = cal_data_path / str(boost::format("%s_%s_cal_v0.2_%s.csv") % rx_tx % what % serial); if (fs::exists(cal_data_path)){ if (append) write_header = false; else fs::rename(cal_data_path, cal_data_path.string() + str(boost::format(".%d") % time(NULL))); } cal_data.open(cal_data_path.string().c_str(), std::ofstream::out | std::ofstream::app); if (write_header) { //fill the calibration file cal_data << boost::format("name, %s Frontend Calibration\n") % rx_tx_upper; cal_data << boost::format("serial, %s\n") % serial; cal_data << boost::format("timestamp, %d\n") % time(NULL); cal_data << boost::format("version, 0, 1\n"); cal_data << boost::format("DATA STARTS HERE\n"); // For DC calibration we also store LMS6002D integer values if (what == "dc") cal_data << "lo_frequency, correction_real, correction_imag, measured, delta, int_i, int_q\n"; else cal_data << "lo_frequency, correction_real, correction_imag, measured, delta\n"; } for (size_t i = 0; i < results.size(); i++){ // Write to file cal_data << results[i].freq; if (what == "dc") { cal_data << ", " << dc_offset_int2double(results[i].real_corr); cal_data << ", " << dc_offset_int2double(results[i].imag_corr); } else { cal_data << ", " << results[i].real_corr; cal_data << ", " << results[i].imag_corr; } cal_data << ", " << results[i].best; cal_data << ", " << results[i].delta; if (what == "dc") { cal_data << ", " << results[i].real_corr; cal_data << ", " << results[i].imag_corr; } cal_data << "\n"; } std::cout << "wrote cal data to " << cal_data_path << std::endl; } /*********************************************************************** * Data capture routine **********************************************************************/ static void capture_samples( uhd::rx_streamer::sptr rx_stream, std::vector &buff, const size_t nsamps_requested ){ size_t num_rx_samps; buff.resize(nsamps_requested); uhd::rx_metadata_t md; for (int i=0; i<10; i++) { uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE); stream_cmd.num_samps = buff.size(); stream_cmd.stream_now = true; rx_stream->issue_stream_cmd(stream_cmd); num_rx_samps = rx_stream->recv(&buff.front(), buff.size(), md); //validate the received data if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE && md.error_code != uhd::rx_metadata_t::ERROR_CODE_OVERFLOW){ throw std::runtime_error(str(boost::format( "Unexpected error code 0x%x" ) % md.error_code)); } //we can live if all the data didnt come in if (num_rx_samps > buff.size()/2){ buff.resize(num_rx_samps); return; } if (num_rx_samps == buff.size()) break; } if (num_rx_samps != buff.size()){ throw std::runtime_error("did not get all the samples requested"); } } /*********************************************************************** * Transmit thread **********************************************************************/ static void tx_thread(uhd::usrp::multi_usrp::sptr usrp, const double tx_wave_freq, const double tx_wave_ampl){ uhd::set_thread_priority_safe(); //create a transmit streamer uhd::stream_args_t stream_args("fc32"); //complex floats uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args); //setup variables and allocate buffer uhd::tx_metadata_t md; md.has_time_spec = false; std::vector buff(tx_stream->get_max_num_samps()*10); //values for the wave table lookup size_t index = 0; const double tx_rate = usrp->get_tx_rate(); const size_t step = boost::math::iround(wave_table_len * tx_wave_freq/tx_rate); wave_table table(tx_wave_ampl); //fill buff and send until interrupted while (not boost::this_thread::interruption_requested()){ for (size_t i = 0; i < buff.size(); i++){ buff[i] = table(index += step); } tx_stream->send(&buff.front(), buff.size(), md); } //send a mini EOB packet md.end_of_burst = true; tx_stream->send("", 0, md); } /*********************************************************************** * Tune RX and TX routine **********************************************************************/ static double tune_rx_and_tx(uhd::usrp::multi_usrp::sptr usrp, const double tx_lo_freq, const double rx_offset){ //tune the transmitter with no cordic uhd::tune_request_t tx_tune_req(tx_lo_freq); tx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL; tx_tune_req.dsp_freq = 0; usrp->set_tx_freq(tx_tune_req); //tune the receiver usrp->set_rx_freq(uhd::tune_request_t(usrp->get_tx_freq(), rx_offset)); boost::this_thread::sleep(boost::posix_time::milliseconds(10)); return usrp->get_tx_freq(); } /*********************************************************************** * Setup function **********************************************************************/ static uhd::usrp::multi_usrp::sptr setup_usrp_for_cal(const std::string &args, const std::string &which, std::string &serial, int vga1_gain, int vga2_gain, int rx_gain, int verbose) { std::cout << std::endl; std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl; uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args); // Do we have an UmTRX here? uhd::property_tree::sptr tree = usrp->get_device()->get_tree(); const uhd::fs_path mb_path = "/mboards/0"; const std::string mb_name = tree->access(mb_path / "name").get(); if (mb_name.find("UMTRX") == std::string::npos){ throw std::runtime_error("This utility supports only UmTRX hardware."); } //set subdev spec usrp->set_rx_subdev_spec(which+":0"); usrp->set_tx_subdev_spec(which+":0"); UHD_MSG(status) << "Running calibration for " << usrp->get_tx_subdev_name(0) << std::endl; serial = get_serial(usrp, "tx"); UHD_MSG(status) << "Daughterboard serial: " << serial << std::endl; //set the antennas to cal if (not uhd::has(usrp->get_rx_antennas(), "CAL") or not uhd::has(usrp->get_tx_antennas(), "CAL")){ throw std::runtime_error("This board does not have the CAL antenna option, cannot self-calibrate."); } usrp->set_rx_antenna("CAL"); usrp->set_tx_antenna("CAL"); //set optimum defaults // GSM symbol rate * 4 usrp->set_tx_rate(13e6/12); usrp->set_rx_rate(13e6/12); // 500kHz LPF usrp->set_tx_bandwidth(1e6); usrp->set_rx_bandwidth(1e6); // Our recommended VGA1/VGA2 usrp->set_tx_gain(vga1_gain, "VGA1"); usrp->set_tx_gain(vga2_gain, "VGA2"); usrp->set_rx_gain(rx_gain); if (verbose) printf("actual Tx VGA1 gain = %.0f dB\n", usrp->get_tx_gain("VGA1")); if (verbose) printf("actual Tx VGA2 gain = %.0f dB\n", usrp->get_tx_gain("VGA2")); if (verbose) printf("actual Rx gain = %.0f dB\n", usrp->get_rx_gain()); return usrp; }