Files
UHD-Fairwaves/fpga/fifo/packet_dispatcher36_x4.v

317 lines
12 KiB
Verilog

//
// Copyright 2011-2012 Ettus Research LLC
//
// Packet dispatcher with fifo36 interface and 4 outputs.
//
// The packet dispatcher expects 2-byte padded ethernet frames.
// The frames will be inspected at ethernet, IPv4, UDP, and VRT layers.
// Packets are dispatched into the following streams:
// * tx dsp stream
// * tx control stream
// * to cpu stream
// * to external stream
// * to both cpu and external
//
// The following registers are used for dispatcher control:
// * base + 0 = this ipv4 address (32 bits)
// * base + 1 = udp control port (upper 16 bits), udp dsp port (lower 16 bits)
//
module packet_dispatcher36_x4
#(
parameter BASE = 0
)
(
//clocking and reset interface:
input clk, input rst, input clr,
//setting register interface:
input set_stb, input [7:0] set_addr, input [31:0] set_data,
//input stream interfaces:
input [35:0] com_inp_data, input com_inp_valid, output com_inp_ready,
//output stream interfaces:
output [35:0] ext_out_data, output ext_out_valid, input ext_out_ready,
output [35:0] dsp_out_data, output dsp_out_valid, input dsp_out_ready,
output [35:0] ctl_out_data, output ctl_out_valid, input ctl_out_ready,
output [35:0] cpu_out_data, output cpu_out_valid, input cpu_out_ready
);
//setting register to program the IP address
wire [31:0] my_ip_addr;
setting_reg #(.my_addr(BASE+0)) sreg_ip_addr(
.clk(clk),.rst(rst),
.strobe(set_stb),.addr(set_addr),.in(set_data),
.out(my_ip_addr),.changed()
);
//setting register to program the UDP DSP port
wire [15:0] dsp_udp_port, ctl_udp_port;
setting_reg #(.my_addr(BASE+1), .width(32)) sreg_data_port(
.clk(clk),.rst(rst),
.strobe(set_stb),.addr(set_addr),.in(set_data),
.out({ctl_udp_port, dsp_udp_port}),.changed()
);
////////////////////////////////////////////////////////////////////
// Communication input inspector
// - inspect com input and send it to DSP, EXT, CPU, or BOTH
////////////////////////////////////////////////////////////////////
localparam PD_STATE_READ_COM_PRE = 0;
localparam PD_STATE_READ_COM = 1;
localparam PD_STATE_WRITE_REGS = 2;
localparam PD_STATE_WRITE_LIVE = 3;
localparam PD_DEST_DSP = 0;
localparam PD_DEST_EXT = 1;
localparam PD_DEST_CPU = 2;
localparam PD_DEST_BOF = 3;
localparam PD_DEST_CTL = 4;
localparam PD_MAX_NUM_DREGS = 13; //padded_eth + ip + udp + seq + vrt_hdr
localparam PD_DREGS_DSP_OFFSET = 11; //offset to start dsp at
//output inspector interfaces
wire [35:0] pd_out_dsp_data;
wire pd_out_dsp_valid;
wire pd_out_dsp_ready;
wire [35:0] pd_out_ext_data;
wire pd_out_ext_valid;
wire pd_out_ext_ready;
wire [35:0] pd_out_cpu_data;
wire pd_out_cpu_valid;
wire pd_out_cpu_ready;
wire [35:0] pd_out_bof_data;
wire pd_out_bof_valid;
wire pd_out_bof_ready;
wire [35:0] pd_out_ctl_data;
wire pd_out_ctl_valid;
wire pd_out_ctl_ready;
reg [1:0] pd_state;
reg [2:0] pd_dest;
reg [3:0] pd_dreg_count; //data registers to buffer headers
wire [3:0] pd_dreg_count_next = pd_dreg_count + 1'b1;
wire pd_dreg_counter_done = (pd_dreg_count_next == PD_MAX_NUM_DREGS)? 1'b1 : 1'b0;
reg [35:0] pd_dregs [PD_MAX_NUM_DREGS-1:0];
reg is_eth_dst_mac_bcast;
reg is_eth_type_ipv4;
reg is_eth_ipv4_proto_udp;
reg is_eth_ipv4_dst_addr_here;
reg is_eth_udp_dsp_port_here;
reg is_eth_udp_ctl_port_here;
wire is_vrt_size_zero = (com_inp_data[15:0] == 16'h0); //needed on the same cycle, so it cant be registered
//Inspector output flags special case:
//Inject SOF into flags at first DSP line.
wire [3:0] pd_out_flags = (
(pd_dreg_count == PD_DREGS_DSP_OFFSET) &&
(pd_dest == PD_DEST_DSP)
)? 4'b0001 : pd_dregs[pd_dreg_count][35:32];
//The communication inspector ouput data and valid signals:
//Mux between com input and data registers based on the state.
wire [35:0] pd_out_data = (pd_state == PD_STATE_WRITE_REGS)?
{pd_out_flags, pd_dregs[pd_dreg_count][31:0]} : com_inp_data
;
wire pd_out_valid =
(pd_state == PD_STATE_WRITE_REGS)? 1'b1 : (
(pd_state == PD_STATE_WRITE_LIVE)? com_inp_valid : (
1'b0));
//The communication inspector ouput ready signal:
//Mux between the various destination ready signals.
wire pd_out_ready =
(pd_dest == PD_DEST_DSP)? pd_out_dsp_ready : (
(pd_dest == PD_DEST_EXT)? pd_out_ext_ready : (
(pd_dest == PD_DEST_CPU)? pd_out_cpu_ready : (
(pd_dest == PD_DEST_BOF)? pd_out_bof_ready : (
(pd_dest == PD_DEST_CTL)? pd_out_ctl_ready : (
1'b0)))));
//Always connected output data lines.
assign pd_out_dsp_data = pd_out_data;
assign pd_out_ext_data = pd_out_data;
assign pd_out_cpu_data = pd_out_data;
assign pd_out_bof_data = pd_out_data;
assign pd_out_ctl_data = pd_out_data;
//Destination output valid signals:
//Comes from inspector valid when destination is selected, and otherwise low.
assign pd_out_dsp_valid = (pd_dest == PD_DEST_DSP)? pd_out_valid : 1'b0;
assign pd_out_ext_valid = (pd_dest == PD_DEST_EXT)? pd_out_valid : 1'b0;
assign pd_out_cpu_valid = (pd_dest == PD_DEST_CPU)? pd_out_valid : 1'b0;
assign pd_out_bof_valid = (pd_dest == PD_DEST_BOF)? pd_out_valid : 1'b0;
assign pd_out_ctl_valid = (pd_dest == PD_DEST_CTL)? pd_out_valid : 1'b0;
//The communication inspector ouput ready signal:
//Always ready when storing to data registers,
//comes from inspector ready output when live,
//and otherwise low.
assign com_inp_ready =
(pd_state == PD_STATE_READ_COM_PRE) ? 1'b1 : (
(pd_state == PD_STATE_READ_COM) ? 1'b1 : (
(pd_state == PD_STATE_WRITE_LIVE) ? pd_out_ready : (
1'b0)));
//inspect the incoming data and mark register booleans
always @(posedge clk)
if (com_inp_ready & com_inp_valid) begin
case(pd_dreg_count)
0: begin
is_eth_dst_mac_bcast <= (com_inp_data[15:0] == 16'hffff);
end
1: begin
is_eth_dst_mac_bcast <= is_eth_dst_mac_bcast && (com_inp_data[31:0] == 32'hffffffff);
end
3: begin
is_eth_type_ipv4 <= (com_inp_data[15:0] == 16'h800);
end
6: begin
is_eth_ipv4_proto_udp <= (com_inp_data[23:16] == 8'h11);
end
8: begin
is_eth_ipv4_dst_addr_here <= (com_inp_data[31:0] == my_ip_addr);
end
9: begin
is_eth_udp_dsp_port_here <= (com_inp_data[15:0] == dsp_udp_port);
is_eth_udp_ctl_port_here <= (com_inp_data[15:0] == ctl_udp_port);
end
endcase //pd_dreg_count
end
always @(posedge clk)
if(rst | clr) begin
pd_state <= PD_STATE_READ_COM_PRE;
pd_dreg_count <= 0;
end
else begin
case(pd_state)
PD_STATE_READ_COM_PRE: begin
if (com_inp_ready & com_inp_valid & com_inp_data[32]) begin
pd_state <= PD_STATE_READ_COM;
pd_dreg_count <= pd_dreg_count_next;
pd_dregs[pd_dreg_count] <= com_inp_data;
end
end
PD_STATE_READ_COM: begin
if (com_inp_ready & com_inp_valid) begin
pd_dregs[pd_dreg_count] <= com_inp_data;
if (pd_dreg_counter_done | com_inp_data[33]) begin
pd_state <= PD_STATE_WRITE_REGS;
pd_dreg_count <= 0;
//---------- begin inspection decision -----------//
//EOF or bcast or not IPv4 or not UDP:
if (
com_inp_data[33] || is_eth_dst_mac_bcast ||
~is_eth_type_ipv4 || ~is_eth_ipv4_proto_udp
) begin
pd_dest <= PD_DEST_BOF;
end
//not my IP address:
else if (~is_eth_ipv4_dst_addr_here) begin
pd_dest <= PD_DEST_EXT;
end
//UDP control port and VRT:
else if (is_eth_udp_ctl_port_here && ~is_vrt_size_zero) begin
pd_dest <= PD_DEST_CTL;
pd_dreg_count <= PD_DREGS_DSP_OFFSET;
end
//UDP data port and VRT:
else if (is_eth_udp_dsp_port_here && ~is_vrt_size_zero) begin
pd_dest <= PD_DEST_DSP;
pd_dreg_count <= PD_DREGS_DSP_OFFSET;
end
//other:
else begin
pd_dest <= PD_DEST_CPU;
end
//---------- end inspection decision -------------//
end
else begin
pd_dreg_count <= pd_dreg_count_next;
end
end
end
PD_STATE_WRITE_REGS: begin
if (pd_out_ready & pd_out_valid) begin
if (pd_out_data[33]) begin
pd_state <= PD_STATE_READ_COM_PRE;
pd_dreg_count <= 0;
end
else if (pd_dreg_counter_done) begin
pd_state <= PD_STATE_WRITE_LIVE;
pd_dreg_count <= 0;
end
else begin
pd_dreg_count <= pd_dreg_count_next;
end
end
end
PD_STATE_WRITE_LIVE: begin
if (pd_out_ready & pd_out_valid & pd_out_data[33]) begin
pd_state <= PD_STATE_READ_COM_PRE;
end
end
endcase //pd_state
end
//connect this fast-path signals directly to the DSP out
assign dsp_out_data = pd_out_dsp_data;
assign dsp_out_valid = pd_out_dsp_valid;
assign pd_out_dsp_ready = dsp_out_ready;
assign ctl_out_data = pd_out_ctl_data;
assign ctl_out_valid = pd_out_ctl_valid;
assign pd_out_ctl_ready = ctl_out_ready;
////////////////////////////////////////////////////////////////////
// Splitter and output muxes for the bof packets
// - split the bof packets into two streams
// - mux split packets into cpu out and ext out
////////////////////////////////////////////////////////////////////
//dummy signals to join the the splitter and muxes below
wire [35:0] _split_to_ext_data, _split_to_cpu_data;
wire _split_to_ext_valid, _split_to_cpu_valid;
wire _split_to_ext_ready, _split_to_cpu_ready;
splitter36 bof_out_splitter(
.clk(clk), .rst(rst), .clr(clr),
.inp_data(pd_out_bof_data), .inp_valid(pd_out_bof_valid), .inp_ready(pd_out_bof_ready),
.out0_data(_split_to_ext_data), .out0_valid(_split_to_ext_valid), .out0_ready(_split_to_ext_ready),
.out1_data(_split_to_cpu_data), .out1_valid(_split_to_cpu_valid), .out1_ready(_split_to_cpu_ready)
);
fifo36_mux ext_out_mux(
.clk(clk), .reset(rst), .clear(clr),
.data0_i(pd_out_ext_data), .src0_rdy_i(pd_out_ext_valid), .dst0_rdy_o(pd_out_ext_ready),
.data1_i(_split_to_ext_data), .src1_rdy_i(_split_to_ext_valid), .dst1_rdy_o(_split_to_ext_ready),
.data_o(ext_out_data), .src_rdy_o(ext_out_valid), .dst_rdy_i(ext_out_ready)
);
fifo36_mux cpu_out_mux(
.clk(clk), .reset(rst), .clear(clr),
.data0_i(pd_out_cpu_data), .src0_rdy_i(pd_out_cpu_valid), .dst0_rdy_o(pd_out_cpu_ready),
.data1_i(_split_to_cpu_data), .src1_rdy_i(_split_to_cpu_valid), .dst1_rdy_o(_split_to_cpu_ready),
.data_o(cpu_out_data), .src_rdy_o(cpu_out_valid), .dst_rdy_i(cpu_out_ready)
);
endmodule // packet_dispatcher36_x3