Files
UHD-Fairwaves/firmware/fx2/b100/usrp_main.c
2011-10-12 10:16:48 -07:00

395 lines
10 KiB
C

/*
* USRP - Universal Software Radio Peripheral
*
* Copyright (C) 2003,2004 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Boston, MA 02110-1301 USA
*/
#include "usrp_common.h"
#include "usrp_commands.h"
#include "fpga.h"
#include "usrp_gpif_inline.h"
#include "timer.h"
#include "i2c.h"
#include "isr.h"
#include "usb_common.h"
#include "fx2utils.h"
#include "usrp_globals.h"
#include "usrp_i2c_addr.h"
#include <string.h>
#include "eeprom_io.h"
#include "usb_descriptors.h"
/*
* offsets into boot eeprom for configuration values
*/
#define HW_REV_OFFSET 5
#define SERIAL_NO_OFFSET 247
#define SERIAL_NO_LEN 9
#define bRequestType SETUPDAT[0]
#define bRequest SETUPDAT[1]
#define wValueL SETUPDAT[2]
#define wValueH SETUPDAT[3]
#define wIndexL SETUPDAT[4]
#define wIndexH SETUPDAT[5]
#define wLengthL SETUPDAT[6]
#define wLengthH SETUPDAT[7]
unsigned char g_tx_enable = 0;
unsigned char g_rx_enable = 0;
unsigned char g_rx_overrun = 0;
unsigned char g_tx_underrun = 0;
bit enable_gpif = 0;
/*
* the host side fpga loader code pushes an MD5 hash of the bitstream
* into hash1.
*/
#define USRP_HASH_SIZE 16
xdata at USRP_HASH_SLOT_1_ADDR unsigned char hash1[USRP_HASH_SIZE];
void clear_fpga_data_fifo(void);
static void
get_ep0_data (void)
{
EP0BCL = 0; // arm EP0 for OUT xfer. This sets the busy bit
while (EP0CS & bmEPBUSY) // wait for busy to clear
;
}
static void initialize_gpif_buffer(int ep) {
//clear the GPIF buffers on startup to keep crap out of the data path
FIFORESET = 0x80; SYNCDELAY; //activate NAKALL
FIFORESET = ep; SYNCDELAY;
FIFORESET = 0x00; SYNCDELAY;
}
/*
* Handle our "Vendor Extension" commands on endpoint 0.
* If we handle this one, return non-zero.
*/
unsigned char
app_vendor_cmd (void)
{
if (bRequestType == VRT_VENDOR_IN){
/////////////////////////////////
// handle the IN requests
/////////////////////////////////
switch (bRequest){
case VRQ_GET_STATUS: //this is no longer done via FX2 -- the FPGA will be queried instead
return 0;
break;
case VRQ_I2C_READ:
if (!i2c_read (wValueL, EP0BUF, wLengthL)) return 0;
EP0BCH = 0;
EP0BCL = wLengthL;
break;
case VRQ_SPI_READ:
return 0;
case VRQ_FW_COMPAT:
EP0BCH = 0;
EP0BCL = 2;
break;
default:
return 0;
}
}
else if (bRequestType == VRT_VENDOR_OUT){
/////////////////////////////////
// handle the OUT requests
/////////////////////////////////
switch (bRequest){
case VRQ_SET_LED:
switch (wIndexL){
case 0:
set_led_0 (wValueL);
break;
case 1:
set_led_1 (wValueL);
break;
default:
return 0;
}
break;
case VRQ_FPGA_LOAD:
switch (wIndexL){ // sub-command
case FL_BEGIN:
return fpga_load_begin ();
case FL_XFER:
get_ep0_data ();
return fpga_load_xfer (EP0BUF, EP0BCL);
case FL_END:
return fpga_load_end ();
default:
return 0;
}
break;
case VRQ_FPGA_SET_RESET:
//fpga_set_reset (wValueL);
break;
case VRQ_I2C_WRITE:
get_ep0_data ();
if (!i2c_write (wValueL, EP0BUF, EP0BCL)) return 0;
//USRP_LED_REG ^= bmLED1;
break;
case VRQ_RESET_GPIF:
initialize_gpif_buffer(wValueL);
break;
case VRQ_ENABLE_GPIF:
enable_gpif = (wValueL != 0) ? 1 : 0;
set_led_1(enable_gpif);
break;
case VRQ_CLEAR_FPGA_FIFO:
clear_fpga_data_fifo();
break;
default:
return 0;
}
}
else
return 0; // invalid bRequestType
return 1;
}
static int short_pkt_state = 0;
#define SHORT_PACKET_DETECTED (short_pkt_state != bitSHORT_PACKET_SIGNAL)
//yes, this is a little opaque
//basically this is necessary because while all the logic to inform the FPGA
//of what we're trying to do via the CTL pins is contained within the flowstates,
//we need to assert the endpoint select pin one clock cycle before the flowstate starts.
//this is the job of the wave descriptor. rather than switch between waves, since that
//involves a little more setup, we just modify the wave table on the fly.
inline static void setup_wave_data_read(void) {
GPIF_WAVE_DATA[80] = 0x06;
GPIF_WAVE_DATA[81] = 0x06;
}
inline static void setup_wave_ctrl_read(void) {
GPIF_WAVE_DATA[80] = 0x0E;
GPIF_WAVE_DATA[81] = 0x0E;
}
inline static void setup_wave_data_write(void) {
GPIF_WAVE_DATA[112] = 0x00;
GPIF_WAVE_DATA[113] = 0x00;
}
inline static void setup_wave_ctrl_write(void) {
GPIF_WAVE_DATA[112] = 0x08;
GPIF_WAVE_DATA[113] = 0x08;
}
inline static void handle_data_write(void) {
GPIFTCB1 = 0x01; //SYNCDELAY;
GPIFTCB0 = 0x00;
setup_flowstate_data_write ();
setup_wave_data_write();
GPIFTRIG = bmGPIF_EP2_START | bmGPIF_WRITE; // start the xfer
SYNCDELAY;
while (!(GPIFTRIG & bmGPIF_IDLE));
}
inline static void handle_ctrl_write(void) {
GPIFTCB1 = 0x00;
GPIFTCB0 = 0x10;
setup_flowstate_ctrl_write ();
setup_wave_ctrl_write();
GPIFTRIG = bmGPIF_EP4_START | bmGPIF_WRITE; // start the xfer
SYNCDELAY;
while (!(GPIFTRIG & bmGPIF_IDLE));
}
inline static void handle_data_read(void) {
GPIFTCB1 = 0x01;
GPIFTCB0 = 0x00;
setup_flowstate_data_read ();
setup_wave_data_read();
short_pkt_state = bitSHORT_PACKET_SIGNAL;
GPIFTRIG = bmGPIF_EP6_START | bmGPIF_READ; // start the xfer
SYNCDELAY;
while (!(GPIFTRIG & bmGPIF_IDLE));
INPKTEND = 0x06; // tell USB we filled buffer (6 is our endpoint num)
SYNCDELAY;
if(SHORT_PACKET_DETECTED) {
while(!(EP6CS & bmEPEMPTY)); //wait for packet to send
INPKTEND = 0x06; //send a ZLP
//toggle_led_1(); //FIXME DEBUG
}
}
inline static void handle_ctrl_read(void) {
GPIFTCB1 = 0x00;
GPIFTCB0 = 0x10;
setup_flowstate_ctrl_read ();
setup_wave_ctrl_read();
GPIFTRIG = bmGPIF_EP8_START | bmGPIF_READ; // start the xfer
SYNCDELAY;
while (!(GPIFTRIG & bmGPIF_IDLE));
INPKTEND = 8; // tell USB we filled buffer (8 is our endpoint num)
}
//clear the FPGA datapath by reading but not submitting, instead clearing the FIFO after each transaction
void clear_fpga_data_fifo(void) {
while(fpga_has_data_packet_avail()) {
GPIFTCB1 = 0x01;
GPIFTCB0 = 0x00;
setup_flowstate_data_read ();
setup_wave_data_read();
GPIFTRIG = bmGPIF_EP6_START | bmGPIF_READ; // start the xfer
SYNCDELAY;
while (!(GPIFTRIG & bmGPIF_IDLE));
initialize_gpif_buffer(6); //reset the FIFO instead of committing it
}
}
static void
main_loop (void)
{
while (1){
if (usb_setup_packet_avail ())
usb_handle_setup_packet ();
if(enable_gpif){
if (fx2_has_ctrl_packet_avail() && fpga_has_room_for_ctrl_packet()) handle_ctrl_write();
if (fx2_has_room_for_ctrl_packet() && fpga_has_ctrl_packet_avail()) handle_ctrl_read();
//we do this
if (fx2_has_data_packet_avail() && fpga_has_room_for_data_packet()) handle_data_write();
if (fx2_has_room_for_data_packet() && fpga_has_data_packet_avail()) handle_data_read();
//five times so that
if (fx2_has_data_packet_avail() && fpga_has_room_for_data_packet()) handle_data_write();
if (fx2_has_room_for_data_packet() && fpga_has_data_packet_avail()) handle_data_read();
//we can piggyback
if (fx2_has_data_packet_avail() && fpga_has_room_for_data_packet()) handle_data_write();
if (fx2_has_room_for_data_packet() && fpga_has_data_packet_avail()) handle_data_read();
//data transfers
if (fx2_has_data_packet_avail() && fpga_has_room_for_data_packet()) handle_data_write();
if (fx2_has_room_for_data_packet() && fpga_has_data_packet_avail()) handle_data_read();
//without loop overhead
if (fx2_has_data_packet_avail() && fpga_has_room_for_data_packet()) handle_data_write();
if (fx2_has_room_for_data_packet() && fpga_has_data_packet_avail()) handle_data_read();
}
}
}
/*
* called at 100 Hz from timer2 interrupt
*
* Toggle led 0
*/
void
isr_tick (void) interrupt
{
static unsigned char count = 1;
if (--count == 0){
count = 50;
USRP_LED_REG ^= bmLED0;
}
clear_timer_irq ();
}
/*
* Read h/w rev code and serial number out of boot eeprom and
* patch the usb descriptors with the values.
*/
void
patch_usb_descriptors(void)
{
static xdata unsigned char hw_rev;
static xdata unsigned char serial_no[SERIAL_NO_LEN];
unsigned char i;
eeprom_read(I2C_ADDR_BOOT, HW_REV_OFFSET, &hw_rev, 1); // LSB of device id
usb_desc_hw_rev_binary_patch_location_0[0] = hw_rev;
usb_desc_hw_rev_binary_patch_location_1[0] = hw_rev;
usb_desc_hw_rev_ascii_patch_location_0[0] = hw_rev + '0'; // FIXME if we get > 9
eeprom_read(I2C_ADDR_BOOT, SERIAL_NO_OFFSET, serial_no, SERIAL_NO_LEN);
for (i = 0; i < SERIAL_NO_LEN; i++){
unsigned char ch = serial_no[i];
if (ch == 0xff) // make unprogrammed EEPROM default to '0'
ch = '0';
usb_desc_serial_number_ascii[i << 1] = ch;
}
}
void
main (void)
{
enable_gpif = 0;
memset (hash1, 0, USRP_HASH_SIZE); // zero fpga bitstream hash. This forces reload
init_usrp ();
init_gpif ();
// if (UC_START_WITH_GSTATE_OUTPUT_ENABLED)
//IFCONFIG |= bmGSTATE; // no conflict, start with it on
set_led_0 (0);
set_led_1 (0);
EA = 0; // disable all interrupts
patch_usb_descriptors();
setup_autovectors ();
usb_install_handlers ();
//hook_timer_tick ((unsigned short) isr_tick);
EIEX4 = 1; // disable INT4 FIXME
EA = 1; // global interrupt enable
fx2_renumerate (); // simulates disconnect / reconnect
setup_flowstate_common();
main_loop ();
}