Files
UHD-Fairwaves/host/utils/umtrx_cal_tx_dc_offset.cpp
Kirill Zakharenko 61ac2ee278 umtrx_cal_*: fix for abrupt termination
tx_thread creates a child thread, which it join()s on, when terminating
calling interrupt() on tx_thread interferes with the join()
so we replace interrupt() with an atomic flag

(not sure how this worked before)
2019-07-03 21:17:31 +03:00

416 lines
15 KiB
C++

//
// Copyright 2010 Ettus Research LLC
// Copyright 2012-1015 Fairwaves, Inc
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "usrp_cal_utils.hpp"
#include <uhd/utils/safe_main.hpp>
#include <boost/ref.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
#include <boost/math/special_functions/round.hpp>
#include <iostream>
#include <complex>
#include <cmath>
#include <ctime>
namespace po = boost::program_options;
/***********************************************************************
* Calibration utility class
**********************************************************************/
class dc_cal_t {
public:
dc_cal_t(uhd::property<uint8_t> &dc_i_prop, uhd::property<uint8_t> &dc_q_prop,
uhd::rx_streamer::sptr rx_stream,
const size_t nsamps,
double bb_dc_freq,
double rx_rate,
int verbose,
bool debug_raw_data,
int init_dc_i=128, int init_dc_q=128);
double init();
void run_q(int dc_q);
void run_i(int dc_i);
void run_iq(int dc_i, int dc_q);
void set_dc_i(double i) {prop_set_check(_dc_i_prop, i);}
void set_dc_q(double q) {prop_set_check(_dc_q_prop, q);}
void set_dc_i_best() {set_dc_i(_best_dc_i);}
void set_dc_q_best() {set_dc_q(_best_dc_q);}
double get_lowest_offset() const {return _lowest_offset;}
int get_best_dc_i() const {return _best_dc_i;}
int get_best_dc_q() const {return _best_dc_q;}
protected:
double _lowest_offset;
int _best_dc_i;
int _best_dc_q;
uhd::property<uint8_t> &_dc_i_prop;
uhd::property<uint8_t> &_dc_q_prop;
uhd::rx_streamer::sptr _rx_stream;
std::vector<samp_type> _buff;
const size_t _nsamps;
double _bb_dc_freq;
double _rx_rate;
int _verbose;
bool _debug_raw_data;
void prop_set_check(uhd::property<uint8_t> &prop, uint8_t val);
double get_dbrms();
bool run_x();
};
dc_cal_t::dc_cal_t(uhd::property<uint8_t> &dc_i_prop, uhd::property<uint8_t> &dc_q_prop,
uhd::rx_streamer::sptr rx_stream,
const size_t nsamps,
double bb_dc_freq,
double rx_rate,
int verbose,
bool debug_raw_data,
int init_dc_i,
int init_dc_q)
: _best_dc_i(init_dc_i), _best_dc_q(init_dc_q)
, _dc_i_prop(dc_i_prop), _dc_q_prop(dc_q_prop)
, _rx_stream(rx_stream)
, _nsamps(nsamps)
, _bb_dc_freq(bb_dc_freq)
, _rx_rate(rx_rate)
, _verbose(verbose)
, _debug_raw_data(debug_raw_data)
{
}
double dc_cal_t::init()
{
set_dc_i_best();
set_dc_q_best();
//get the DC offset tone size
_lowest_offset = get_dbrms();
if (_verbose) printf("initial_dc_dbrms = %2.0f dB\n", _lowest_offset);
if (_debug_raw_data) write_samples_to_file(_buff, "initial_samples.dat");
return _lowest_offset;
}
void dc_cal_t::run_q(int dc_q)
{
if (_verbose) printf(" dc_q = %d", dc_q);
set_dc_q(dc_q);
if (run_x())
_best_dc_q = dc_q;
}
void dc_cal_t::run_i(int dc_i)
{
if (_verbose) printf(" dc_i = %d", dc_i);
set_dc_i(dc_i);
if (run_x())
_best_dc_i = dc_i;
}
void dc_cal_t::run_iq(int dc_i, int dc_q)
{
if (_verbose) printf(" dc_i = %d dc_q = %d", dc_i, dc_q);
set_dc_i(dc_i);
set_dc_q(dc_q);
if (run_x()) {
_best_dc_i = dc_i;
_best_dc_q = dc_q;
}
}
void dc_cal_t::prop_set_check(uhd::property<uint8_t> &prop, uint8_t val)
{
prop.set(val);
uint8_t val_read = prop.get();
if (val_read != val)
throw std::runtime_error(
str(boost::format("Calibration property sets incorrectly. Requested %d, read back %d")
% int(val) % int(val_read)));
}
double dc_cal_t::get_dbrms()
{
//receive some samples
capture_samples(_rx_stream, _buff, _nsamps);
//calculate dB rms
return compute_tone_dbrms(_buff, _bb_dc_freq/_rx_rate);
}
bool dc_cal_t::run_x()
{
bool better = false;
//get the DC offset tone size
const double dc_dbrms = get_dbrms();
if (_verbose) printf(" dc_dbrms = %2.0f dB", dc_dbrms);
if (dc_dbrms < _lowest_offset){
_lowest_offset = dc_dbrms;
better = true;
if (_verbose) printf(" *");
if (_debug_raw_data) write_samples_to_file(_buff, "best_samples.dat");
}
if (_verbose) printf("\n");
return better;
}
/***********************************************************************
* Calibration method: Downhill
**********************************************************************/
static result_t calibrate_downhill(dc_cal_t &dc_cal,
double tx_lo,
int verbose)
{
//bounds and results from searching
int dc_i_start, dc_i_stop, dc_i_step;
int dc_q_start, dc_q_stop, dc_q_step;
//capture initial uncorrected value
const double initial_dc_dbrms = dc_cal.init();
for (size_t i = 0; i < 6; i++)
{
if (verbose) printf(" iteration %ld best_i = %d best_q = %d\n", i, dc_cal.get_best_dc_i(), dc_cal.get_best_dc_q());
switch (i) {
case 0:
dc_i_start = 0;
dc_i_stop = 256;
dc_q_start = 0;
dc_q_stop = 256;
dc_i_step = 10;
dc_q_step = 10;
break;
case 1:
dc_i_start = dc_cal.get_best_dc_i() - 15;
dc_i_stop = dc_cal.get_best_dc_i() + 15;
dc_q_start = dc_cal.get_best_dc_q() - 15;
dc_q_stop = dc_cal.get_best_dc_q() + 15;
dc_i_step = 1;
dc_q_step = 1;
break;
case 2:
case 3:
dc_i_start = dc_cal.get_best_dc_i() - 3;
dc_i_stop = dc_cal.get_best_dc_i() + 3;
dc_q_start = dc_cal.get_best_dc_q() - 3;
dc_q_stop = dc_cal.get_best_dc_q() + 3;
dc_i_step = 1;
dc_q_step = 1;
break;
default:
dc_i_start = dc_cal.get_best_dc_i() - 1;
dc_i_stop = dc_cal.get_best_dc_i() + 1;
dc_q_start = dc_cal.get_best_dc_q() - 1;
dc_q_stop = dc_cal.get_best_dc_q() + 1;
dc_i_step = 1;
dc_q_step = 1;
break;
};
if (i <= 2) {
// Itereate through I and Q sequentially
if (verbose) printf(" I in [%d; %d] step %d Q = %d\n",
dc_i_start, dc_i_stop, dc_i_step, dc_cal.get_best_dc_q());
dc_cal.set_dc_q_best();
for (int dc_i = dc_i_start; dc_i <= dc_i_stop; dc_i += dc_i_step){
dc_cal.run_i(dc_i);
}
if (verbose) printf(" I = %d Q in [%d; %d] step %d\n",
dc_cal.get_best_dc_i(), dc_q_start, dc_q_stop, dc_q_step);
dc_cal.set_dc_i_best();
for (int dc_q = dc_q_start; dc_q <= dc_q_stop; dc_q += dc_q_step){
dc_cal.run_q(dc_q);
}
} else {
// Itereate through all combinations of I and Q
if (verbose) printf(" I in [%d; %d] step %d Q in [%d; %d] step %d\n",
dc_i_start, dc_i_stop, dc_i_step,
dc_q_start, dc_q_stop, dc_q_step);
for (int dc_i = dc_i_start; dc_i <= dc_i_stop; dc_i += dc_i_step) {
for (int dc_q = dc_q_start; dc_q <= dc_q_stop; dc_q += dc_q_step) {
dc_cal.run_iq(dc_i, dc_q);
}
}
}
}
// Calibration result
result_t result;
result.freq = tx_lo;
result.real_corr = dc_cal.get_best_dc_i();
result.imag_corr = dc_cal.get_best_dc_q();
result.best = dc_cal.get_lowest_offset();
result.delta = initial_dc_dbrms - result.best;
// Output to console
std::cout
<< result.freq/1e6 << " MHz "
<< "I/Q = " << result.real_corr << "/" << result.imag_corr << " "
<< "(" << dc_offset_int2double(result.real_corr) << "/"
<< dc_offset_int2double(result.imag_corr) << ") "
<< "leakage = " << result.best << " dB, "
<< "improvement = " << result.delta << " dB\n"
<< std::flush
;
return result;
}
/***********************************************************************
* Main
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
std::string args, which, serial;
int verbose;
int vga1_gain, vga2_gain, rx_gain;
double tx_wave_freq, tx_wave_ampl, rx_offset;
double freq_start, freq_stop, freq_step;
size_t nsamps;
size_t ntrials;
int single_test_i, single_test_q;
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("verbose", "enable some verbose")
("debug_raw_data", "save raw captured signals to files")
("args", po::value<std::string>(&args)->default_value(""), "device address args [default = \"\"]")
("which", po::value<std::string>(&which)->default_value("A"), "Which chain A or B?")
("vga1", po::value<int>(&vga1_gain)->default_value(-20), "LMS6002D Tx VGA1 gain [-35 to -4]")
("vga2", po::value<int>(&vga2_gain)->default_value(22), "LMS6002D Tx VGA2 gain [0 to 25]")
("rx_gain", po::value<int>(&rx_gain)->default_value(50), "LMS6002D Rx combined gain [0 to 156]")
("tx_wave_freq", po::value<double>(&tx_wave_freq)->default_value(50e3), "Transmit wave frequency in Hz")
("tx_wave_ampl", po::value<double>(&tx_wave_ampl)->default_value(0.7), "Transmit wave amplitude in counts")
("rx_offset", po::value<double>(&rx_offset)->default_value(300e3), "RX LO offset from the TX LO in Hz")
("freq_start", po::value<double>(&freq_start), "Frequency start in Hz (do not specify for default)")
("freq_stop", po::value<double>(&freq_stop), "Frequency stop in Hz (do not specify for default)")
("freq_step", po::value<double>(&freq_step)->default_value(default_freq_step), "Step size for LO sweep in Hz")
("nsamps", po::value<size_t>(&nsamps)->default_value(default_num_samps), "Samples per data capture")
("ntrials", po::value<size_t>(&ntrials)->default_value(1), "Num trials per TX LO")
("single_test", "Perform a single measurement and exit (freq = freq_start, I = single_test_i, Q = single_test_q]")
("single_test_i", po::value<int>(&single_test_i)->default_value(128), "Only in the single test mode! I channel calibration value [0 to 255]")
("single_test_q", po::value<int>(&single_test_q)->default_value(128), "Only in the single test mode! Q channel calibration value [0 to 255]")
("append", "Append measurements to the calibratoin file instead of rewriting [default=overwrite]")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("UmTRX Generate TX DC Offset Calibration Table %s") % desc << std::endl;
std::cout <<
"This application measures leakage between RX and TX using LMS6002D internal RF loopback to self-calibrate.\n"
<< std::endl;
return EXIT_FAILURE;
}
verbose = vm.count("verbose");
// Create a USRP device
uhd::usrp::multi_usrp::sptr usrp = setup_usrp_for_cal(args, which, serial, vga1_gain, vga2_gain, rx_gain, verbose);
//create a receive streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
//create a transmitter thread
std::atomic<bool> interrupted(false);
boost::thread_group threads;
threads.create_thread(boost::bind(&tx_thread, usrp, tx_wave_freq, tx_wave_ampl, boost::ref(interrupted)));
//store the results here
std::vector<result_t> results;
uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
const uhd::fs_path tx_fe_path = "/mboards/0/dboards/"+which+"/tx_frontends/0";
uhd::property<uint8_t> &dc_i_prop = tree->access<uint8_t>(tx_fe_path / "lms6002d/tx_dc_i/value");
uhd::property<uint8_t> &dc_q_prop = tree->access<uint8_t>(tx_fe_path / "lms6002d/tx_dc_q/value");
if (not vm.count("freq_start")) freq_start = usrp->get_tx_freq_range().start() + 50e6;
if (not vm.count("freq_stop")) freq_stop = usrp->get_tx_freq_range().stop() - 50e6;
UHD_MSG(status) << boost::format("Calibration frequency type: DC offset") << std::endl;
UHD_MSG(status) << boost::format("Calibration frequency range: %d MHz -> %d MHz") % (freq_start/1e6) % (freq_stop/1e6) << std::endl;
for (double tx_lo_i = freq_start; tx_lo_i <= freq_stop; tx_lo_i += freq_step){
const double tx_lo = tune_rx_and_tx(usrp, tx_lo_i, rx_offset);
//frequency constants for this tune event
const double actual_rx_rate = usrp->get_rx_rate();
const double actual_tx_freq = usrp->get_tx_freq();
const double actual_rx_freq = usrp->get_rx_freq();
const double bb_dc_freq = actual_tx_freq - actual_rx_freq;
if (verbose) printf("actual_rx_rate = %0.2f MHz\n", actual_rx_rate/1e6);
if (verbose) printf("actual_tx_freq = %0.2f MHz\n", actual_tx_freq/1e6);
if (verbose) printf("actual_rx_freq = %0.2f MHz\n", actual_rx_freq/1e6);
if (verbose) printf("bb_dc_freq = %0.2f MHz\n", bb_dc_freq/1e6);
for (size_t trial_no = 0; trial_no < ntrials; trial_no++)
{
if (vm.count("single_test"))
{
dc_cal_t dc_cal(dc_i_prop, dc_q_prop,
rx_stream,
nsamps,
bb_dc_freq,
actual_rx_rate,
verbose,
vm.count("debug_raw_data"),
single_test_i, single_test_q);
const double dc_dbrms = dc_cal.init();;
printf("I = %d Q = %d ", single_test_i, single_test_q);
printf("dc_dbrms = %2.1f dB\n", dc_dbrms);
} else {
dc_cal_t dc_cal(dc_i_prop, dc_q_prop,
rx_stream,
nsamps,
bb_dc_freq,
actual_rx_rate,
verbose,
vm.count("debug_raw_data"));
// Perform normal calibration
results.push_back(calibrate_downhill(dc_cal, tx_lo, verbose));
}
}
}
std::cout << std::endl;
//stop the transmitter
interrupted = true;
threads.join_all();
if (not vm.count("single_test"))
store_results(usrp, results, "tx", "dc", vm.count("append"));
return EXIT_SUCCESS;
}