Files
UHD-Fairwaves/host/umtrx_impl.cpp

807 lines
37 KiB
C++

// Copyright 2012-2014 Fairwaves LLC
// Copyright 2010-2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "umtrx_impl.hpp"
#include "umtrx_regs.hpp"
#include "cores/apply_corrections.hpp"
#include <uhd/utils/log.hpp>
#include <uhd/utils/msg.hpp>
#include <boost/bind.hpp>
#include <boost/thread.hpp> //sleep
#include <boost/assign/list_of.hpp>
#include <boost/utility.hpp>
static int verbosity = 0;
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
namespace asio = boost::asio;
/***********************************************************************
* Make
**********************************************************************/
static device::sptr umtrx_make(const device_addr_t &device_addr){
return device::sptr(new umtrx_impl(device_addr));
}
device_addrs_t umtrx_find(const device_addr_t &hint);
UHD_STATIC_BLOCK(register_umtrx_device){
#ifdef UHD_HAS_DEVICE_FILTER
device::register_device(&umtrx_find, &umtrx_make, device::USRP);
#else
device::register_device(&umtrx_find, &umtrx_make);
#endif
}
/***********************************************************************
* MTU Discovery
**********************************************************************/
struct mtu_result_t{
size_t recv_mtu, send_mtu;
};
static std::vector<std::string> power_sensors =
boost::assign::list_of("PR1")("PF1")("PR2")("PF2");
static std::vector<std::string> dc_sensors =
boost::assign::list_of("zero")("Vin")("VinPA")("DCOUT");
static mtu_result_t determine_mtu(const std::string &addr, const mtu_result_t &user_mtu){
udp_simple::sptr udp_sock = udp_simple::make_connected(
addr, BOOST_STRINGIZE(USRP2_UDP_CTRL_PORT)
);
//The FPGA offers 4K buffers, and the user may manually request this.
//However, multiple simultaneous receives (2DSP slave + 2DSP master),
//require that buffering to be used internally, and this is a safe setting.
std::vector<boost::uint8_t> buffer(std::max(user_mtu.recv_mtu, user_mtu.send_mtu));
usrp2_ctrl_data_t *ctrl_data = reinterpret_cast<usrp2_ctrl_data_t *>(&buffer.front());
static const double echo_timeout = 0.020; //20 ms
//test holler - check if its supported in this fw version
ctrl_data->id = htonl(USRP2_CTRL_ID_HOLLER_AT_ME_BRO);
ctrl_data->proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data->data.echo_args.len = htonl(sizeof(usrp2_ctrl_data_t));
udp_sock->send(boost::asio::buffer(buffer, sizeof(usrp2_ctrl_data_t)));
udp_sock->recv(boost::asio::buffer(buffer), echo_timeout);
if (ntohl(ctrl_data->id) != USRP2_CTRL_ID_HOLLER_BACK_DUDE)
throw uhd::not_implemented_error("holler protocol not implemented");
size_t min_recv_mtu = sizeof(usrp2_ctrl_data_t), max_recv_mtu = user_mtu.recv_mtu;
size_t min_send_mtu = sizeof(usrp2_ctrl_data_t), max_send_mtu = user_mtu.send_mtu;
while (min_recv_mtu < max_recv_mtu){
size_t test_mtu = (max_recv_mtu/2 + min_recv_mtu/2 + 3) & ~3;
ctrl_data->id = htonl(USRP2_CTRL_ID_HOLLER_AT_ME_BRO);
ctrl_data->proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data->data.echo_args.len = htonl(test_mtu);
udp_sock->send(boost::asio::buffer(buffer, sizeof(usrp2_ctrl_data_t)));
size_t len = udp_sock->recv(boost::asio::buffer(buffer), echo_timeout);
if (len >= test_mtu) min_recv_mtu = test_mtu;
else max_recv_mtu = test_mtu - 4;
}
while (min_send_mtu < max_send_mtu){
size_t test_mtu = (max_send_mtu/2 + min_send_mtu/2 + 3) & ~3;
ctrl_data->id = htonl(USRP2_CTRL_ID_HOLLER_AT_ME_BRO);
ctrl_data->proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data->data.echo_args.len = htonl(sizeof(usrp2_ctrl_data_t));
udp_sock->send(boost::asio::buffer(buffer, test_mtu));
size_t len = udp_sock->recv(boost::asio::buffer(buffer), echo_timeout);
if (len >= sizeof(usrp2_ctrl_data_t)) len = ntohl(ctrl_data->data.echo_args.len);
if (len >= test_mtu) min_send_mtu = test_mtu;
else max_send_mtu = test_mtu - 4;
}
mtu_result_t mtu;
mtu.recv_mtu = min_recv_mtu;
mtu.send_mtu = min_send_mtu;
return mtu;
}
/***********************************************************************
* Structors
**********************************************************************/
umtrx_impl::umtrx_impl(const device_addr_t &device_addr)
{
_device_ip_addr = device_addr["addr"];
UHD_MSG(status) << "Opening a UmTRX device... " << _device_ip_addr << std::endl;
//mtu self check -- not really doing anything with it
mtu_result_t user_mtu;
user_mtu.recv_mtu = size_t(device_addr.cast<double>("recv_frame_size", udp_simple::mtu));
user_mtu.send_mtu = size_t(device_addr.cast<double>("send_frame_size", udp_simple::mtu));
user_mtu = determine_mtu(_device_ip_addr, user_mtu);
UHD_VAR(user_mtu.recv_mtu);
UHD_VAR(user_mtu.send_mtu);
////////////////////////////////////////////////////////////////////
// create controller objects and initialize the properties tree
////////////////////////////////////////////////////////////////////
_tree = property_tree::make();
_tree->create<std::string>("/name").set("UmTRX Device");
const fs_path mb_path = "/mboards/0";
////////////////////////////////////////////////////////////////
// create the iface that controls i2c, spi, uart, and wb
////////////////////////////////////////////////////////////////
_iface = umtrx_iface::make(udp_simple::make_connected(
_device_ip_addr, BOOST_STRINGIZE(USRP2_UDP_CTRL_PORT)
));
_tree->create<std::string>(mb_path / "name").set(_iface->get_cname());
_tree->create<std::string>(mb_path / "fw_version").set(_iface->get_fw_version_string());
//get access to the various interfaces
_tree->create<uhd::wb_iface::sptr>(mb_path / "wb_iface").set(_iface);
_tree->create<uhd::spi_iface::sptr>(mb_path / "spi_iface").set(_iface);
_tree->create<uhd::i2c_iface::sptr>(mb_path / "i2c_iface").set(_iface);
//check the fpga compatibility number
const boost::uint32_t fpga_compat_num = _iface->peek32(U2_REG_COMPAT_NUM_RB);
const boost::uint16_t fpga_major = fpga_compat_num >> 16, fpga_minor = fpga_compat_num & 0xffff;
if (fpga_major != USRP2_FPGA_COMPAT_NUM){
throw uhd::runtime_error(str(boost::format(
"\nPlease update the firmware and FPGA images for your device.\n"
"See the application notes for UmTRX for instructions.\n"
"Expected FPGA compatibility number %d, but got %d:\n"
"The FPGA build is not compatible with the host code build."
) % int(USRP2_FPGA_COMPAT_NUM) % fpga_major));
}
_tree->create<std::string>(mb_path / "fpga_version").set(str(boost::format("%u.%u") % fpga_major % fpga_minor));
//lock the device/motherboard to this process
_iface->lock_device(true);
////////////////////////////////////////////////////////////////
// high performance settings control
////////////////////////////////////////////////////////////////
_iface->poke32(U2_REG_MISC_CTRL_SFC_CLEAR, 1); //clear settings fifo control state machine
_ctrl = umtrx_fifo_ctrl::make(this->make_xport(UMTRX_CTRL_FRAMER, device_addr_t()), UMTRX_CTRL_SID);
_ctrl->peek32(0); //test readback
_tree->create<time_spec_t>(mb_path / "time/cmd")
.subscribe(boost::bind(&umtrx_fifo_ctrl::set_time, _ctrl, _1));
_tree->create<double>(mb_path / "tick_rate")
.subscribe(boost::bind(&umtrx_fifo_ctrl::set_tick_rate, _ctrl, _1));
////////////////////////////////////////////////////////////////////
// setup the mboard eeprom
////////////////////////////////////////////////////////////////////
_tree->create<mboard_eeprom_t>(mb_path / "eeprom")
.set(_iface->mb_eeprom)
.subscribe(boost::bind(&umtrx_impl::set_mb_eeprom, this, _iface, _1));
////////////////////////////////////////////////////////////////
// create clock control objects
////////////////////////////////////////////////////////////////
_tree->access<double>(mb_path / "tick_rate")
.publish(boost::bind(&umtrx_impl::get_master_clock_rate, this))
.subscribe(boost::bind(&umtrx_impl::update_tick_rate, this, _1));
_tree->create<double>(mb_path / "dsp_rate")
.publish(boost::bind(&umtrx_impl::get_master_dsp_rate, this));
////////////////////////////////////////////////////////////////
// reset LMS chips
////////////////////////////////////////////////////////////////
_iface->poke32(U2_REG_MISC_LMS_RES, LMS1_RESET | LMS2_RESET);
_iface->poke32(U2_REG_MISC_LMS_RES, 0);
_iface->poke32(U2_REG_MISC_LMS_RES, LMS1_RESET | LMS2_RESET);
////////////////////////////////////////////////////////////////////////
// autodetect umtrx hardware rev and initialize rev. specific sensors
////////////////////////////////////////////////////////////////////////
detect_hw_rev(mb_path);
_tree->create<std::string>(mb_path / "hwrev").set(get_hw_rev());
UHD_MSG(status) << "Detected UmTRX " << get_hw_rev() << std::endl;
_tree->create<bool>(mb_path / "divsw1")
.subscribe(boost::bind(&umtrx_impl::set_divsw1, this, _1));
_tree->create<bool>(mb_path / "divsw2")
.subscribe(boost::bind(&umtrx_impl::set_divsw2, this, _1));
// TODO: Add EEPROM cell to manually override this
_pll_div = 1;
////////////////////////////////////////////////////////////////////
// create codec control objects
////////////////////////////////////////////////////////////////////
for (char name = 'A'; name <= 'B'; name++)
{
const fs_path rx_codec_path = mb_path / ("rx_codecs") / std::string(1, name);
_tree->create<std::string>(rx_codec_path / "name").set("RX LMS ADC");
_tree->create<int>(rx_codec_path / "gains"); //empty cuz gains are in frontend
const fs_path tx_codec_path = mb_path / ("tx_codecs") / std::string(1, name);
_tree->create<std::string>(tx_codec_path / "name").set("TX LMS DAC");
_tree->create<int>(tx_codec_path / "gains"); //empty cuz gains are in frontend
}
////////////////////////////////////////////////////////////////
// create frontend control objects
////////////////////////////////////////////////////////////////
_rx_fes.resize(2);
_tx_fes.resize(2);
_rx_fes[0] = rx_frontend_core_200::make(_ctrl, U2_REG_SR_ADDR(SR_RX_FRONT0));
_rx_fes[1] = rx_frontend_core_200::make(_ctrl, U2_REG_SR_ADDR(SR_RX_FRONT1));
_tx_fes[0] = tx_frontend_core_200::make(_ctrl, U2_REG_SR_ADDR(SR_TX_FRONT0));
_tx_fes[1] = tx_frontend_core_200::make(_ctrl, U2_REG_SR_ADDR(SR_TX_FRONT1));
_tree->create<subdev_spec_t>(mb_path / "rx_subdev_spec")
.subscribe(boost::bind(&umtrx_impl::update_rx_subdev_spec, this, _1));
_tree->create<subdev_spec_t>(mb_path / "tx_subdev_spec")
.subscribe(boost::bind(&umtrx_impl::update_tx_subdev_spec, this, _1));
for (char name = 'A'; name <= 'B'; name++)
{
const std::string fe_name = std::string(1, name);
const fs_path rx_fe_path = mb_path / "rx_frontends" / fe_name;
const fs_path tx_fe_path = mb_path / "tx_frontends" / fe_name;
const rx_frontend_core_200::sptr rx_fe = (fe_name=="A")?_rx_fes[0]:_rx_fes[1];
const tx_frontend_core_200::sptr tx_fe = (fe_name=="A")?_tx_fes[0]:_tx_fes[1];
tx_fe->set_mux("IQ");
rx_fe->set_mux(false/*no swap*/);
_tree->create<std::complex<double> >(rx_fe_path / "dc_offset" / "value")
.coerce(boost::bind(&rx_frontend_core_200::set_dc_offset, rx_fe, _1))
.set(std::complex<double>(0.0, 0.0));
_tree->create<bool>(rx_fe_path / "dc_offset" / "enable")
.subscribe(boost::bind(&rx_frontend_core_200::set_dc_offset_auto, rx_fe, _1))
.set(true);
_tree->create<std::complex<double> >(rx_fe_path / "iq_balance" / "value")
.subscribe(boost::bind(&rx_frontend_core_200::set_iq_balance, rx_fe, _1))
.set(std::polar<double>(0.0, 0.0));
_tree->create<std::complex<double> >(tx_fe_path / "dc_offset" / "value")
.coerce(boost::bind(&tx_frontend_core_200::set_dc_offset, tx_fe, _1))
.set(std::complex<double>(0.0, 0.0));
_tree->create<std::complex<double> >(tx_fe_path / "iq_balance" / "value")
.subscribe(boost::bind(&tx_frontend_core_200::set_iq_balance, tx_fe, _1))
.set(std::polar<double>(0.0, 0.0));
}
////////////////////////////////////////////////////////////////
// create rx dsp control objects
////////////////////////////////////////////////////////////////
_rx_dsps.resize(_iface->peek32(U2_REG_NUM_DDC));
if (_rx_dsps.size() < 2) throw uhd::runtime_error(str(boost::format("umtrx rx_dsps %u -- (unsupported FPGA image?)") % _rx_dsps.size()));
if (_rx_dsps.size() > 0) _rx_dsps[0] = rx_dsp_core_200::make(_ctrl, U2_REG_SR_ADDR(SR_RX_DSP0), U2_REG_SR_ADDR(SR_RX_CTRL0), UMTRX_DSP_RX0_SID, true);
if (_rx_dsps.size() > 1) _rx_dsps[1] = rx_dsp_core_200::make(_ctrl, U2_REG_SR_ADDR(SR_RX_DSP1), U2_REG_SR_ADDR(SR_RX_CTRL1), UMTRX_DSP_RX1_SID, true);
if (_rx_dsps.size() > 2) _rx_dsps[2] = rx_dsp_core_200::make(_ctrl, U2_REG_SR_ADDR(SR_RX_DSP2), U2_REG_SR_ADDR(SR_RX_CTRL2), UMTRX_DSP_RX2_SID, true);
if (_rx_dsps.size() > 3) _rx_dsps[3] = rx_dsp_core_200::make(_ctrl, U2_REG_SR_ADDR(SR_RX_DSP3), U2_REG_SR_ADDR(SR_RX_CTRL3), UMTRX_DSP_RX3_SID, true);
_tree->create<sensor_value_t>(mb_path / "rx_dsps"); //phony property so this dir exists
for (size_t dspno = 0; dspno < _rx_dsps.size(); dspno++){
_rx_dsps[dspno]->set_mux("IQ", false/*no swap*/);
_rx_dsps[dspno]->set_link_rate(UMTRX_LINK_RATE_BPS);
_tree->access<double>(mb_path / "dsp_rate")
.subscribe(boost::bind(&rx_dsp_core_200::set_tick_rate, _rx_dsps[dspno], _1));
_tree->access<double>(mb_path / "tick_rate")
.subscribe(boost::bind(&rx_dsp_core_200::set_vita_rate, _rx_dsps[dspno], _1));
fs_path rx_dsp_path = mb_path / str(boost::format("rx_dsps/%u") % dspno);
_tree->create<meta_range_t>(rx_dsp_path / "rate/range")
.publish(boost::bind(&rx_dsp_core_200::get_host_rates, _rx_dsps[dspno]));
_tree->create<double>(rx_dsp_path / "rate/value")
.set(this->get_master_clock_rate()/12) //some default
.coerce(boost::bind(&rx_dsp_core_200::set_host_rate, _rx_dsps[dspno], _1))
.subscribe(boost::bind(&umtrx_impl::update_rx_samp_rate, this, dspno, _1));
_tree->create<double>(rx_dsp_path / "freq/value")
.coerce(boost::bind(&rx_dsp_core_200::set_freq, _rx_dsps[dspno], _1));
_tree->create<meta_range_t>(rx_dsp_path / "freq/range")
.publish(boost::bind(&rx_dsp_core_200::get_freq_range, _rx_dsps[dspno]));
_tree->create<stream_cmd_t>(rx_dsp_path / "stream_cmd")
.subscribe(boost::bind(&rx_dsp_core_200::issue_stream_command, _rx_dsps[dspno], _1));
}
////////////////////////////////////////////////////////////////
// create tx dsp control objects
////////////////////////////////////////////////////////////////
_tx_dsps.resize(_iface->peek32(U2_REG_NUM_DUC));
if (_tx_dsps.empty()) _tx_dsps.resize(1); //uhd cant support empty sides
if (_tx_dsps.size() > 0) _tx_dsps[0] = tx_dsp_core_200::make(_ctrl, U2_REG_SR_ADDR(SR_TX_DSP0), U2_REG_SR_ADDR(SR_TX_CTRL0), UMTRX_DSP_TX0_SID);
if (_tx_dsps.size() > 1) _tx_dsps[1] = tx_dsp_core_200::make(_ctrl, U2_REG_SR_ADDR(SR_TX_DSP1), U2_REG_SR_ADDR(SR_TX_CTRL1), UMTRX_DSP_TX1_SID);
_tree->create<sensor_value_t>(mb_path / "tx_dsps"); //phony property so this dir exists
for (size_t dspno = 0; dspno < _tx_dsps.size(); dspno++){
_tx_dsps[dspno]->set_link_rate(UMTRX_LINK_RATE_BPS);
_tree->access<double>(mb_path / "dsp_rate")
.subscribe(boost::bind(&tx_dsp_core_200::set_tick_rate, _tx_dsps[dspno], _1));
fs_path tx_dsp_path = mb_path / str(boost::format("tx_dsps/%u") % dspno);
_tree->create<meta_range_t>(tx_dsp_path / "rate/range")
.publish(boost::bind(&tx_dsp_core_200::get_host_rates, _tx_dsps[dspno]));
_tree->create<double>(tx_dsp_path / "rate/value")
.set(this->get_master_clock_rate()/12) //some default
.coerce(boost::bind(&tx_dsp_core_200::set_host_rate, _tx_dsps[dspno], _1))
.subscribe(boost::bind(&umtrx_impl::update_tx_samp_rate, this, dspno, _1));
_tree->create<double>(tx_dsp_path / "freq/value")
.coerce(boost::bind(&tx_dsp_core_200::set_freq, _tx_dsps[dspno], _1));
_tree->create<meta_range_t>(tx_dsp_path / "freq/range")
.publish(boost::bind(&tx_dsp_core_200::get_freq_range, _tx_dsps[dspno]));
}
////////////////////////////////////////////////////////////////
// create time control objects
////////////////////////////////////////////////////////////////
time64_core_200::readback_bases_type time64_rb_bases;
time64_rb_bases.rb_hi_now = U2_REG_TIME64_HI_RB_IMM;
time64_rb_bases.rb_lo_now = U2_REG_TIME64_LO_RB_IMM;
time64_rb_bases.rb_hi_pps = U2_REG_TIME64_HI_RB_PPS;
time64_rb_bases.rb_lo_pps = U2_REG_TIME64_LO_RB_PPS;
_time64 = time64_core_200::make(_ctrl, U2_REG_SR_ADDR(SR_TIME64), time64_rb_bases);
_tree->access<double>(mb_path / "tick_rate")
.subscribe(boost::bind(&time64_core_200::set_tick_rate, _time64, _1));
_tree->create<time_spec_t>(mb_path / "time" / "now")
.publish(boost::bind(&time64_core_200::get_time_now, _time64))
.subscribe(boost::bind(&time64_core_200::set_time_now, _time64, _1));
_tree->create<time_spec_t>(mb_path / "time" / "pps")
.publish(boost::bind(&time64_core_200::get_time_last_pps, _time64))
.subscribe(boost::bind(&time64_core_200::set_time_next_pps, _time64, _1));
//setup time source props
_tree->create<std::string>(mb_path / "time_source" / "value")
.subscribe(boost::bind(&time64_core_200::set_time_source, _time64, _1));
_tree->create<std::vector<std::string> >(mb_path / "time_source" / "options")
.publish(boost::bind(&time64_core_200::get_time_sources, _time64));
//setup reference source props
_tree->create<std::string>(mb_path / "clock_source" / "value")
.subscribe(boost::bind(&umtrx_impl::update_clock_source, this, _1));
static const std::vector<std::string> clock_sources = boost::assign::list_of("internal")("external");
_tree->create<std::vector<std::string> >(mb_path / "clock_source"/ "options").set(clock_sources);
////////////////////////////////////////////////////////////////////
// create RF frontend interfacing
////////////////////////////////////////////////////////////////////
_lms_ctrl["A"] = lms6002d_ctrl::make(_ctrl/*spi*/, SPI_SS_LMS1, SPI_SS_AUX1, this->get_master_clock_rate() / _pll_div);
_lms_ctrl["B"] = lms6002d_ctrl::make(_ctrl/*spi*/, SPI_SS_LMS2, SPI_SS_AUX2, this->get_master_clock_rate() / _pll_div);
// LMS dboard do not have physical eeprom so we just hardcode values from host/lib/usrp/dboard/db_lms.cpp
dboard_eeprom_t rx_db_eeprom, tx_db_eeprom, gdb_db_eeprom;
rx_db_eeprom.id = 0xfa07;
rx_db_eeprom.revision = _iface->mb_eeprom["revision"];
tx_db_eeprom.id = 0xfa09;
tx_db_eeprom.revision = _iface->mb_eeprom["revision"];
BOOST_FOREACH(const std::string &fe_name, _lms_ctrl.keys())
{
lms6002d_ctrl::sptr ctrl = _lms_ctrl[fe_name];
const fs_path rx_rf_fe_path = mb_path / "dboards" / fe_name / "rx_frontends" / "0";
const fs_path tx_rf_fe_path = mb_path / "dboards" / fe_name / "tx_frontends" / "0";
_tree->create<std::string>(rx_rf_fe_path / "name").set("LMS6002D");
_tree->create<std::string>(tx_rf_fe_path / "name").set("LMS6002D");
// Different serial numbers for each LMS on a UmTRX.
// This is required to properly correlate calibration files to LMS chips.
rx_db_eeprom.serial = _iface->mb_eeprom["serial"] + "." + fe_name;
tx_db_eeprom.serial = _iface->mb_eeprom["serial"] + "." + fe_name;
_tree->create<dboard_eeprom_t>(mb_path / "dboards" / fe_name / "rx_eeprom")
.set(rx_db_eeprom);
_tree->create<dboard_eeprom_t>(mb_path / "dboards" / fe_name / "tx_eeprom")
.set(tx_db_eeprom);
_tree->create<dboard_eeprom_t>(mb_path / "dboards" / fe_name / "gdb_eeprom")
.set(gdb_db_eeprom);
//sensors -- always say locked
_tree->create<sensor_value_t>(rx_rf_fe_path / "sensors" / "lo_locked")
.publish(boost::bind(&lms6002d_ctrl::get_rx_pll_locked, ctrl));
_tree->create<sensor_value_t>(tx_rf_fe_path / "sensors" / "lo_locked")
.publish(boost::bind(&lms6002d_ctrl::get_tx_pll_locked, ctrl));
//rx gains
BOOST_FOREACH(const std::string &name, ctrl->get_rx_gains())
{
_tree->create<meta_range_t>(rx_rf_fe_path / "gains" / name / "range")
.publish(boost::bind(&lms6002d_ctrl::get_rx_gain_range, ctrl, name));
_tree->create<double>(rx_rf_fe_path / "gains" / name / "value")
.coerce(boost::bind(&lms6002d_ctrl::set_rx_gain, ctrl, _1, name))
.set((ctrl->get_rx_gain_range(name).start() + ctrl->get_rx_gain_range(name).stop())/2.0);
}
//tx gains
BOOST_FOREACH(const std::string &name, ctrl->get_tx_gains())
{
_tree->create<meta_range_t>(tx_rf_fe_path / "gains" / name / "range")
.publish(boost::bind(&lms6002d_ctrl::get_tx_gain_range, ctrl, name));
_tree->create<double>(tx_rf_fe_path / "gains" / name / "value")
.coerce(boost::bind(&lms6002d_ctrl::set_tx_gain, ctrl, _1, name))
.set((ctrl->get_tx_gain_range(name).start() + ctrl->get_tx_gain_range(name).stop())/2.0);
}
//rx freq
_tree->create<double>(rx_rf_fe_path / "freq" / "value")
.coerce(boost::bind(&lms6002d_ctrl::set_rx_freq, ctrl, _1));
_tree->create<meta_range_t>(rx_rf_fe_path / "freq" / "range")
.publish(boost::bind(&lms6002d_ctrl::get_rx_freq_range, ctrl));
_tree->create<bool>(rx_rf_fe_path / "use_lo_offset").set(false);
//tx freq
_tree->create<double>(tx_rf_fe_path / "freq" / "value")
.coerce(boost::bind(&lms6002d_ctrl::set_tx_freq, ctrl, _1));
_tree->create<meta_range_t>(tx_rf_fe_path / "freq" / "range")
.publish(boost::bind(&lms6002d_ctrl::get_tx_freq_range, ctrl));
_tree->create<bool>(tx_rf_fe_path / "use_lo_offset").set(false);
//rx ant
_tree->create<std::vector<std::string> >(rx_rf_fe_path / "antenna" / "options")
.publish(boost::bind(&lms6002d_ctrl::get_rx_antennas, ctrl));
_tree->create<std::string>(rx_rf_fe_path / "antenna" / "value")
.subscribe(boost::bind(&lms6002d_ctrl::set_rx_ant, ctrl, _1))
.set("RX1");
//tx ant
_tree->create<std::vector<std::string> >(tx_rf_fe_path / "antenna" / "options")
.publish(boost::bind(&lms6002d_ctrl::get_tx_antennas, ctrl));
_tree->create<std::string>(tx_rf_fe_path / "antenna" / "value")
.subscribe(boost::bind(&lms6002d_ctrl::set_tx_ant, ctrl, _1))
.set("TX2");
//misc
_tree->create<std::string>(rx_rf_fe_path / "connection").set("IQ");
_tree->create<std::string>(tx_rf_fe_path / "connection").set("IQ");
_tree->create<bool>(rx_rf_fe_path / "enabled")
.coerce(boost::bind(&lms6002d_ctrl::set_rx_enabled, ctrl, _1));
_tree->create<bool>(tx_rf_fe_path / "enabled")
.coerce(boost::bind(&lms6002d_ctrl::set_tx_enabled, ctrl, _1));
//rx bw
_tree->create<double>(rx_rf_fe_path / "bandwidth" / "value")
.coerce(boost::bind(&lms6002d_ctrl::set_rx_bandwidth, ctrl, _1))
.set(2*0.75e6);
_tree->create<meta_range_t>(rx_rf_fe_path / "bandwidth" / "range")
.publish(boost::bind(&lms6002d_ctrl::get_rx_bw_range, ctrl));
//tx bw
_tree->create<double>(tx_rf_fe_path / "bandwidth" / "value")
.coerce(boost::bind(&lms6002d_ctrl::set_tx_bandwidth, ctrl, _1))
.set(2*0.75e6);
_tree->create<meta_range_t>(tx_rf_fe_path / "bandwidth" / "range")
.publish(boost::bind(&lms6002d_ctrl::get_tx_bw_range, ctrl));
//bind frontend corrections to the dboard freq props
_tree->access<double>(tx_rf_fe_path / "freq" / "value")
.set(0.0) //default value
.subscribe(boost::bind(&umtrx_impl::set_tx_fe_corrections, this, "0", fe_name, _1));
_tree->access<double>(rx_rf_fe_path / "freq" / "value")
.set(0.0) //default value
.subscribe(boost::bind(&umtrx_impl::set_rx_fe_corrections, this, "0", fe_name, _1));
//tx cal props
_tree->create<uint8_t>(tx_rf_fe_path / "lms6002d" / "tx_dc_i" / "value")
.subscribe(boost::bind(&lms6002d_ctrl::_set_tx_vga1dc_i_int, ctrl, _1))
.publish(boost::bind(&lms6002d_ctrl::get_tx_vga1dc_i_int, ctrl));
_tree->create<uint8_t>(tx_rf_fe_path / "lms6002d" / "tx_dc_q" / "value")
.subscribe(boost::bind(&lms6002d_ctrl::_set_tx_vga1dc_q_int, ctrl, _1))
.publish(boost::bind(&lms6002d_ctrl::get_tx_vga1dc_q_int, ctrl));
//set Tx DC calibration values, which are read from mboard EEPROM
std::string tx_name = (fe_name=="A")?"tx1":"tx2";
const std::string dc_i = _iface->mb_eeprom.get(tx_name+"-vga1-dc-i", "");
const std::string dc_q = _iface->mb_eeprom.get(tx_name+"-vga1-dc-q", "");
if (not dc_i.empty()) _tree->access<uint8_t>(tx_rf_fe_path / "lms6002d" / "tx_dc_i" / "value")
.set(boost::lexical_cast<int>(dc_i));
if (not dc_q.empty()) _tree->access<uint8_t>(tx_rf_fe_path / "lms6002d" / "tx_dc_q" / "value")
.set(boost::lexical_cast<int>(dc_q));
}
//set TCXO DAC calibration value, which is read from mboard EEPROM
const std::string tcxo_dac = _iface->mb_eeprom.get("tcxo-dac", "");
if (not tcxo_dac.empty()) _tree->create<uint16_t>(mb_path / "tcxo_dac" / "value")
.subscribe(boost::bind(&umtrx_impl::set_tcxo_dac, this, _iface, _1))
.set(boost::lexical_cast<uint16_t>(tcxo_dac));
////////////////////////////////////////////////////////////////////
// post config tasks
////////////////////////////////////////////////////////////////////
_tree->access<double>(mb_path / "tick_rate")
.set(this->get_master_clock_rate());
_tree->access<double>(mb_path / "dsp_rate")
.set(this->get_master_dsp_rate());
this->time64_self_test();
//reset cordic rates and their properties to zero
BOOST_FOREACH(const std::string &name, _tree->list(mb_path / "rx_dsps"))
{
_tree->access<double>(mb_path / "rx_dsps" / name / "freq" / "value").set(0.0);
}
BOOST_FOREACH(const std::string &name, _tree->list(mb_path / "tx_dsps"))
{
_tree->access<double>(mb_path / "tx_dsps" / name / "freq" / "value").set(0.0);
}
_rx_streamers.resize(_rx_dsps.size());
_tx_streamers.resize(_tx_dsps.size());
subdev_spec_t rx_spec("A:0 B:0 A:0 B:0");
rx_spec.resize(_rx_dsps.size());
_tree->access<subdev_spec_t>(mb_path / "rx_subdev_spec").set(rx_spec);
subdev_spec_t tx_spec("A:0 B:0 A:0 B:0");
tx_spec.resize(_tx_dsps.size());
_tree->access<subdev_spec_t>(mb_path / "tx_subdev_spec").set(tx_spec);
_tree->access<std::string>(mb_path / "clock_source" / "value").set("internal");
_tree->access<std::string>(mb_path / "time_source" / "value").set("none");
}
umtrx_impl::~umtrx_impl(void)
{
BOOST_FOREACH(const std::string &fe_name, _lms_ctrl.keys())
{
lms6002d_ctrl::sptr ctrl = _lms_ctrl[fe_name];
try
{
ctrl->set_rx_enabled(false);
ctrl->set_tx_enabled(false);
}
catch (...){}
}
}
void umtrx_impl::set_pa_dcdc_r(uint8_t val)
{
// AD5245 control
if (_hw_rev >= UMTRX_VER_2_3_1)
_iface->write_i2c(BOOST_BINARY(0101100), boost::assign::list_of(0)(val));
}
void umtrx_impl::set_mb_eeprom(const uhd::i2c_iface::sptr &iface, const uhd::usrp::mboard_eeprom_t &eeprom)
{
store_umtrx_eeprom(eeprom, *iface);
}
void umtrx_impl::time64_self_test(void)
{
//check the the ticks elapsed across a sleep is within an expected range
//this proves that the clock is the correct rate and not off by a factor
UHD_MSG(status) << "Time register self-test... " << std::flush;
const time_spec_t t0 = _time64->get_time_now();
const double sleepTime = 0.50;
boost::this_thread::sleep(boost::posix_time::milliseconds(long(sleepTime*1000)));
const time_spec_t t1 = _time64->get_time_now();
const double secs_elapsed = (t1 - t0).get_real_secs();
const bool within_range = (secs_elapsed < (1.5)*sleepTime and secs_elapsed > (0.5)*sleepTime);
UHD_MSG(status) << (within_range? "pass" : "fail") << std::endl;
}
void umtrx_impl::update_clock_source(const std::string &){}
void umtrx_impl::set_rx_fe_corrections(const std::string &mb, const std::string &board, const double lo_freq){
apply_rx_fe_corrections(this->get_tree()->subtree("/mboards/" + mb), board, lo_freq);
}
void umtrx_impl::set_tx_fe_corrections(const std::string &mb, const std::string &board, const double lo_freq){
apply_tx_fe_corrections(this->get_tree()->subtree("/mboards/" + mb), board, lo_freq);
}
void umtrx_impl::set_tcxo_dac(const umtrx_iface::sptr &iface, const uint16_t val){
if (verbosity>0) printf("umtrx_impl::set_tcxo_dac(%d)\n", val);
iface->send_zpu_action(UMTRX_ZPU_REQUEST_SET_VCTCXO_DAC, val);
}
uint16_t umtrx_impl::get_tcxo_dac(const umtrx_iface::sptr &iface){
uint16_t val = iface->send_zpu_action(UMTRX_ZPU_REQUEST_GET_VCTCXO_DAC, 0);
if (verbosity>0) printf("umtrx_impl::get_tcxo_dac(): %d\n", val);
return (uint16_t)val;
}
uhd::sensor_value_t umtrx_impl::read_temp_c(const std::string &which)
{
double temp = (which == "A") ? _temp_side_a.get_temp() :
_temp_side_b.get_temp();
return uhd::sensor_value_t("Temp"+which, temp, "C");
}
uhd::sensor_value_t umtrx_impl::read_pa_v(const std::string &which)
{
unsigned i;
for (i = 0; i < 4; i++) {
if (which == power_sensors[i])
break;
}
UHD_ASSERT_THROW(i < 4);
_sense_pwr.set_input((ads1015_ctrl::ads1015_input)
(ads1015_ctrl::ADS1015_CONF_AIN0_GND + i));
double val = _sense_pwr.get_value() * 10;
return uhd::sensor_value_t("Voltage"+which, val, "V");
}
uhd::sensor_value_t umtrx_impl::read_dc_v(const std::string &which)
{
unsigned i;
for (i = 0; i < 4; i++) {
if (which == dc_sensors[i])
break;
}
UHD_ASSERT_THROW(i < 4);
_sense_dc.set_input((ads1015_ctrl::ads1015_input)
(ads1015_ctrl::ADS1015_CONF_AIN0_GND + i));
double val = _sense_dc.get_value() * 40;
return uhd::sensor_value_t("Voltage"+which, val, "V");
}
void umtrx_impl::detect_hw_rev(const fs_path& mb_path)
{
//UmTRX v2.0 doesn't have temp sensors
//UmTRX v2.1 has a temp sensor only on A side
//UmTRX v2.2 has both temp sensor
//UmTRX v2.3.0 has power sensors ADC
//UmTRX v2.3.1 has power supply ADC & programmed resistor array
if (!tmp102_ctrl::check(_iface, tmp102_ctrl::TMP102_SDA)) {
_tree->create<sensor_value_t>(mb_path / "sensors"); //phony property so this dir exists
_hw_rev = UMTRX_VER_2_0;
return;
}
// Initialize side A temp sensor
_temp_side_a.init(_iface, tmp102_ctrl::TMP102_SDA);
_temp_side_a.set_ex_mode(true);
_tree->create<sensor_value_t>(mb_path / "sensors" / "tempA")
.publish(boost::bind(&umtrx_impl::read_temp_c, this, "A"));
UHD_MSG(status) << this->read_temp_c("A").to_pp_string() << std::endl;
if (!tmp102_ctrl::check(_iface, tmp102_ctrl::TMP102_SCL)) {
_hw_rev = UMTRX_VER_2_1;
return;
}
// Initialize side B temp sensor
_temp_side_b.init(_iface, tmp102_ctrl::TMP102_SCL);
_temp_side_b.set_ex_mode(true);
_tree->create<sensor_value_t>(mb_path / "sensors" / "tempB")
.publish(boost::bind(&umtrx_impl::read_temp_c, this, "B"));
UHD_MSG(status) << this->read_temp_c("B").to_pp_string() << std::endl;
if (!ads1015_ctrl::check(_iface, ads1015_ctrl::ADS1015_ADDR_VDD)) {
_hw_rev = UMTRX_VER_2_2;
return;
}
//Initialize PA sense ADC
_sense_pwr.init(_iface, ads1015_ctrl::ADS1015_ADDR_VDD);
_sense_pwr.set_mode(true);
_sense_pwr.set_pga(ads1015_ctrl::ADS1015_PGA_2_048V);
for (unsigned i = 0; i < power_sensors.size(); i++) {
_tree->create<sensor_value_t>(mb_path / "sensors" / "voltage"+power_sensors[i])
.publish(boost::bind(&umtrx_impl::read_pa_v, this, power_sensors[i]));
UHD_MSG(status) << this->read_pa_v(power_sensors[i]).to_pp_string() << std::endl;
}
if (!ads1015_ctrl::check(_iface, ads1015_ctrl::ADS1015_ADDR_GROUND)) {
_hw_rev = UMTRX_VER_2_3_0;
return;
}
_sense_dc.init(_iface, ads1015_ctrl::ADS1015_ADDR_GROUND);
_sense_dc.set_mode(true);
_sense_dc.set_pga(ads1015_ctrl::ADS1015_PGA_1_024V);
for (unsigned i = 0; i < power_sensors.size(); i++) {
_tree->create<sensor_value_t>(mb_path / "sensors" / "voltage"+dc_sensors[i])
.publish(boost::bind(&umtrx_impl::read_dc_v, this, dc_sensors[i]));
UHD_MSG(status) << this->read_dc_v(dc_sensors[i]).to_pp_string() << std::endl;
}
_hw_rev = UMTRX_VER_2_3_1;
_tree->create<uint8_t>(mb_path / "pa_dcdc_r")
.subscribe(boost::bind(&umtrx_impl::set_pa_dcdc_r, this, _1));
std::string pa_dcdc_r = _iface->mb_eeprom.get("pa_dcdc_r", "");
char* pa_dcdc_r_env = getenv("UMTRX_PA_DCDC_R");
if (pa_dcdc_r_env) {
UHD_MSG(status) << "EEPROM value of pa_dcdc_r:" << pa_dcdc_r.c_str()
<< " is overriden with env UMTRX_PA_DCDC_R:"
<< pa_dcdc_r_env << std::endl;
pa_dcdc_r = pa_dcdc_r_env;
}
if (pa_dcdc_r.empty())
set_pa_dcdc_r(0);
else
set_pa_dcdc_r(boost::lexical_cast<unsigned>(pa_dcdc_r));
_pa_en1 = (boost::lexical_cast<int>(_iface->mb_eeprom.get("pa_en1", "1")) == 1);
_pa_en2 = (boost::lexical_cast<int>(_iface->mb_eeprom.get("pa_en2", "1")) == 1);
if (getenv("UMTRX_PA_EN1")) _pa_en1 = (boost::lexical_cast<int>(getenv("UMTRX_PA_EN1")) != 0);
if (getenv("UMTRX_PA_EN2")) _pa_en2 = (boost::lexical_cast<int>(getenv("UMTRX_PA_EN2")) != 0);
std::string pa_low = _iface->mb_eeprom.get("pa_low", "");
char* pa_low_env = getenv("UMTRX_PA_LOW");
if (pa_low_env) {
UHD_MSG(status) << "EEPROM value of pa_low:" << pa_low.c_str()
<< " is overriden with env UMTRX_PA_LOW:"
<< pa_low_env << std::endl;
pa_low = pa_low_env;
}
if (pa_low.empty())
_pa_nlow = false;
else
_pa_nlow = (boost::lexical_cast<int>(pa_low) == 0);
_tree->create<bool>(mb_path / "pa_en1")
.subscribe(boost::bind(&umtrx_impl::set_enpa1, this, _1));
_tree->create<bool>(mb_path / "pa_en2")
.subscribe(boost::bind(&umtrx_impl::set_enpa2, this, _1));
_tree->create<bool>(mb_path / "pa_nlow")
.subscribe(boost::bind(&umtrx_impl::set_nlow, this, _1));
commit_pa_state();
UHD_MSG(status) << "PA low=`" << pa_low.c_str()
<< "` PA dcdc_r=`" << pa_dcdc_r.c_str()
<< "`" << std::endl;
}
void umtrx_impl::commit_pa_state()
{
if (_hw_rev >= UMTRX_VER_2_3_1)
_iface->poke32(U2_REG_MISC_LMS_RES, LMS1_RESET | LMS2_RESET
| PAREG_ENDCSYNC
| ((_pa_nlow) ? PAREG_NLOW_PA : 0)
| ((_pa_en1) ? PAREG_ENPA1 : 0)
| ((_pa_en2) ? PAREG_ENPA2 : 0));
}
void umtrx_impl::set_enpa1(bool en)
{
_pa_en1 = en; commit_pa_state();
}
void umtrx_impl::set_enpa2(bool en)
{
_pa_en2 = en; commit_pa_state();
}
void umtrx_impl::set_nlow(bool en)
{
_pa_nlow = en; commit_pa_state();
}
void umtrx_impl::set_divsw1(bool en)
{
_iface->poke32(U2_REG_SR_ADDR(SR_DIVSW+0), (en) ? 1 : 0);
}
void umtrx_impl::set_divsw2(bool en)
{
_iface->poke32(U2_REG_SR_ADDR(SR_DIVSW+1), (en) ? 1 : 0);
}
const char* umtrx_impl::get_hw_rev() const
{
switch (_hw_rev) {
case UMTRX_VER_2_0: return "2.0";
case UMTRX_VER_2_1: return "2.1";
case UMTRX_VER_2_2: return "2.2";
case UMTRX_VER_2_3_0: return "2.3.0";
case UMTRX_VER_2_3_1: return "2.3.1";
default: return "[unknown]";
}
}