Files
UHD-Fairwaves/fpga/models/math_real.v
2014-04-07 17:34:55 -07:00

513 lines
15 KiB
Verilog

//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
/*
* This is a general recreation of the VHDL ieee.math_real package.
*/
module math_real ;
// Constants for use below and for general reference
// TODO: Bring it out to 12 (or more???) places beyond the decimal?
localparam MATH_E = 2.7182818284;
localparam MATH_1_OVER_E = 0.3678794411;
localparam MATH_PI = 3.1415926536;
localparam MATH_2_PI = 6.2831853071;
localparam MATH_1_OVER_PI = 0.3183098861;
localparam MATH_PI_OVER_2 = 1.5707963267;
localparam MATH_PI_OVER_3 = 1.0471975511;
localparam MATH_PI_OVER_4 = 0.7853981633;
localparam MATH_3_PI_OVER_2 = 4.7123889803;
localparam MATH_LOG_OF_2 = 0.6931471805;
localparam MATH_LOG_OF_10 = 2.3025850929;
localparam MATH_LOG2_OF_E = 1.4426950408;
localparam MATH_LOG10_OF_E = 0.4342944819;
localparam MATH_SQRT_2 = 1.4142135623;
localparam MATH_1_OVER_SQRT_2= 0.7071067811;
localparam MATH_SQRT_PI = 1.7724538509;
localparam MATH_DEG_TO_RAD = 0.0174532925;
localparam MATH_RAD_TO_DEG = 57.2957795130;
// The number of iterations to do for the Taylor series approximations
localparam EXPLOG_ITERATIONS = 19;
localparam COS_ITERATIONS = 8;
/* Conversion Routines */
// Return the sign of a particular number.
function real sign ;
input real x ;
begin
sign = x < 0.0 ? 1.0 : 0.0 ;
end
endfunction
// Return the trunc function of a number
function real trunc ;
input real x ;
begin
trunc = x - mod(x,1.0) ;
end
endfunction
// Return the ceiling function of a number.
function real ceil ;
input real x ;
real retval ;
begin
retval = mod(x,1.0) ;
if( retval != 0.0 && x > 0.0 ) retval = x+1.0 ;
else retval = x ;
ceil = trunc(retval) ;
end
endfunction
// Return the floor function of a number
function real floor ;
input real x ;
real retval ;
begin
retval = mod(x,1.0) ;
if( retval != 0.0 && x < 0.0 ) retval = x - 1.0 ;
else retval = x ;
floor = trunc(retval) ;
end
endfunction
// Return the round function of a number
function real round ;
input real x ;
real retval ;
begin
retval = x > 0.0 ? x + 0.5 : x - 0.5 ;
round = trunc(retval) ;
end
endfunction
// Return the fractional remainder of (x mod m)
function real mod ;
input real x ;
input real m ;
real retval ;
begin
retval = x ;
if( retval > m ) begin
while( retval > m ) begin
retval = retval - m ;
end
end
else begin
while( retval < -m ) begin
retval = retval + m ;
end
end
mod = retval ;
end
endfunction
// Return the max between two real numbers
function real realmax ;
input real x ;
input real y ;
begin
realmax = x > y ? x : y ;
end
endfunction
// Return the min between two real numbers
function real realmin ;
input real x ;
input real y ;
begin
realmin = x > y ? y : x ;
end
endfunction
/* Random Numbers */
// Generate Gaussian distributed variables
function real gaussian ;
input real mean ;
input real var ;
real u1, u2, v1, v2, s ;
begin
s = 1.0 ;
while( s >= 1.0 ) begin
// Two random numbers between 0 and 1
u1 = $random/4294967296.0 + 0.5 ;
u2 = $random/4294967296.0 + 0.5 ;
// Adjust to be between -1,1
v1 = 2*u1-1.0 ;
v2 = 2*u2-1.0 ;
// Polar mag squared
s = (v1*v1 + v2*v2) ;
end
gaussian = mean + sqrt((-2.0*log(s))/s) * v1 * sqrt(var) ;
// gaussian2 = mean + sqrt(-2*log(s)/s)*v2 * sqrt(var) ;
end
endfunction
/* Roots and Log Functions */
// Return the square root of a number
function real sqrt ;
input real x ;
real retval ;
begin
sqrt = (x == 0.0) ? 0.0 : powr(x,0.5) ;
end
endfunction
// Return the cube root of a number
function real cbrt ;
input real x ;
real retval ;
begin
cbrt = (x == 0.0) ? 0.0 : powr(x,1.0/3.0) ;
end
endfunction
// Return the absolute value of a real value
function real abs ;
input real x ;
begin
abs = (x > 0.0) ? x : -x ;
end
endfunction
// Return a real value raised to an integer power
function real pow ;
input real b ;
input integer x ;
integer absx ;
real retval ;
begin
retval = 1.0 ;
absx = abs(x) ;
repeat(absx) begin
retval = b*retval ;
end
pow = x < 0 ? (1.0/retval) : retval ;
end
endfunction
// Return a real value raised to a real power
function real powr ;
input real b ;
input real x ;
begin
powr = exp(x*log(b)) ;
end
endfunction
// Return the evaluation of e^x where e is the natural logarithm base
// NOTE: This is the Taylor series expansion of e^x
function real exp ;
input real x ;
real retval ;
integer i ;
real nm1_fact ;
real powm1 ;
begin
nm1_fact = 1.0 ;
powm1 = 1.0 ;
retval = 1.0 ;
for( i = 1 ; i < EXPLOG_ITERATIONS ; i = i + 1 ) begin
powm1 = x*powm1 ;
nm1_fact = nm1_fact * i ;
retval = retval + powm1/nm1_fact ;
end
exp = retval ;
end
endfunction
// Return the evaluation log(x)
function real log ;
input real x ;
integer i ;
real whole ;
real xm1oxp1 ;
real retval ;
real newx ;
begin
retval = 0.0 ;
whole = 0.0 ;
newx = x ;
while( newx > MATH_E ) begin
whole = whole + 1.0 ;
newx = newx / MATH_E ;
end
xm1oxp1 = (newx-1.0)/(newx+1.0) ;
for( i = 0 ; i < EXPLOG_ITERATIONS ; i = i + 1 ) begin
retval = retval + pow(xm1oxp1,2*i+1)/(2.0*i+1.0) ;
end
log = whole+2.0*retval ;
end
endfunction
// Return the evaluation ln(x) (same as log(x))
function real ln ;
input real x ;
begin
ln = log(x) ;
end
endfunction
// Return the evaluation log_2(x)
function real log2 ;
input real x ;
begin
log2 = log(x)/MATH_LOG_OF_2 ;
end
endfunction
function real log10 ;
input real x ;
begin
log10 = log(x)/MATH_LOG_OF_10 ;
end
endfunction
function real log_base ;
input real x ;
input real b ;
begin
log_base = log(x)/log(b) ;
end
endfunction
/* Trigonometric Functions */
// Internal function to reduce a value to be between [-pi:pi]
function real reduce ;
input real x ;
real retval ;
begin
retval = x ;
while( abs(retval) > MATH_PI ) begin
retval = retval > MATH_PI ?
(retval - MATH_2_PI) :
(retval + MATH_2_PI) ;
end
reduce = retval ;
end
endfunction
// Return the cos of a number in radians
function real cos ;
input real x ;
integer i ;
integer sign ;
real newx ;
real retval ;
real xsqnm1 ;
real twonm1fact ;
begin
newx = reduce(x) ;
xsqnm1 = 1.0 ;
twonm1fact = 1.0 ;
retval = 1.0 ;
for( i = 1 ; i < COS_ITERATIONS ; i = i + 1 ) begin
sign = -2*(i % 2)+1 ;
xsqnm1 = xsqnm1*newx*newx ;
twonm1fact = twonm1fact * (2.0*i) * (2.0*i-1.0) ;
retval = retval + sign*(xsqnm1/twonm1fact) ;
end
cos = retval ;
end
endfunction
// Return the sin of a number in radians
function real sin ;
input real x ;
begin
sin = cos(x - MATH_PI_OVER_2) ;
end
endfunction
// Return the tan of a number in radians
function real tan ;
input real x ;
begin
tan = sin(x) / cos(x) ;
end
endfunction
// Return the arcsin in radians of a number
function real arcsin ;
input real x ;
begin
arcsin = 2.0*arctan(x/(1.0+sqrt(1.0-x*x))) ;
end
endfunction
// Return the arccos in radians of a number
function real arccos ;
input real x ;
begin
arccos = MATH_PI_OVER_2-arcsin(x) ;
end
endfunction
// Return the arctan in radians of a number
// TODO: Make sure this REALLY does work as it is supposed to!
function real arctan ;
input real x ;
real retval ;
real y ;
real newx ;
real twoiotwoip1 ;
integer i ;
integer mult ;
begin
retval = 1.0 ;
twoiotwoip1 = 1.0 ;
mult = 1 ;
newx = abs(x) ;
while( newx > 1.0 ) begin
mult = mult*2 ;
newx = newx/(1.0+sqrt(1.0+newx*newx)) ;
end
y = 1.0 ;
for( i = 1 ; i < 2*COS_ITERATIONS ; i = i + 1 ) begin
y = y*((newx*newx)/(1+newx*newx)) ;
twoiotwoip1 = twoiotwoip1 * (2.0*i)/(2.0*i+1.0) ;
retval = retval + twoiotwoip1*y ;
end
retval = retval * (newx/(1+newx*newx)) ;
retval = retval * mult ;
arctan = (x > 0.0) ? retval : -retval ;
end
endfunction
// Return the arctan in radians of a ratio x/y
// TODO: Test to make sure this works as it is supposed to!
function real arctan_xy ;
input real x ;
input real y ;
real retval ;
begin
retval = 0.0 ;
if( x < 0.0 ) retval = MATH_PI - arctan(-abs(y)/x) ;
else if( x > 0.0 ) retval = arctan(abs(y)/x) ;
else if( x == 0.0 ) retval = MATH_PI_OVER_2 ;
arctan_xy = (y < 0.0) ? -retval : retval ;
end
endfunction
/* Hyperbolic Functions */
// Return the sinh of a number
function real sinh ;
input real x ;
begin
sinh = (exp(x) - exp(-x))/2.0 ;
end
endfunction
// Return the cosh of a number
function real cosh ;
input real x ;
begin
cosh = (exp(x) + exp(-x))/2.0 ;
end
endfunction
// Return the tanh of a number
function real tanh ;
input real x ;
real e2x ;
begin
e2x = exp(2.0*x) ;
tanh = (e2x+1.0)/(e2x-1.0) ;
end
endfunction
// Return the arcsinh of a number
function real arcsinh ;
input real x ;
begin
arcsinh = log(x+sqrt(x*x+1.0)) ;
end
endfunction
// Return the arccosh of a number
function real arccosh ;
input real x ;
begin
arccosh = ln(x+sqrt(x*x-1.0)) ;
end
endfunction
// Return the arctanh of a number
function real arctanh ;
input real x ;
begin
arctanh = 0.5*ln((1.0+x)/(1.0-x)) ;
end
endfunction
/*
initial begin
$display( "cos(MATH_PI_OVER_3): %f", cos(MATH_PI_OVER_3) ) ;
$display( "sin(MATH_PI_OVER_3): %f", sin(MATH_PI_OVER_3) ) ;
$display( "sign(-10): %f", sign(-10) ) ;
$display( "realmax(MATH_PI,MATH_E): %f", realmax(MATH_PI,MATH_E) ) ;
$display( "realmin(MATH_PI,MATH_E): %f", realmin(MATH_PI,MATH_E) ) ;
$display( "mod(MATH_PI,MATH_E): %f", mod(MATH_PI,MATH_E) ) ;
$display( "ceil(-MATH_PI): %f", ceil(-MATH_PI) ) ;
$display( "ceil(4.0): %f", ceil(4.0) ) ;
$display( "ceil(3.99999999999999): %f", ceil(3.99999999999999) ) ;
$display( "pow(MATH_PI,2): %f", pow(MATH_PI,2) ) ;
$display( "gaussian(1.0,1.0): %f", gaussian(1.0,1.0) ) ;
$display( "round(MATH_PI): %f", round(MATH_PI) ) ;
$display( "trunc(-MATH_PI): %f", trunc(-MATH_PI) ) ;
$display( "ceil(-MATH_PI): %f", ceil(-MATH_PI) ) ;
$display( "floor(MATH_PI): %f", floor(MATH_PI) ) ;
$display( "round(e): %f", round(MATH_E)) ;
$display( "ceil(-e): %f", ceil(-MATH_E)) ;
$display( "exp(MATH_PI): %f", exp(MATH_PI) ) ;
$display( "log2(MATH_PI): %f", log2(MATH_PI) ) ;
$display( "log_base(pow(2,32),2): %f", log_base(pow(2,32),2) ) ;
$display( "ln(0.1): %f", log(0.1) ) ;
$display( "cbrt(7): %f", cbrt(7) ) ;
$display( "cos(MATH_2_PI): %f", cos(20*MATH_2_PI) ) ;
$display( "sin(-MATH_2_PI): %f", sin(-50*MATH_2_PI) ) ;
$display( "sinh(MATH_E): %f", sinh(MATH_E) ) ;
$display( "cosh(MATH_2_PI): %f", cosh(MATH_2_PI) ) ;
$display( "arctan_xy(-4,3): %f", arctan_xy(-4,3) ) ;
$display( "arctan(MATH_PI): %f", arctan(MATH_PI) ) ;
$display( "arctan(-MATH_E/2): %f", arctan(-MATH_E/2) ) ;
$display( "arctan(MATH_PI_OVER_2): %f", arctan(MATH_PI_OVER_2) ) ;
$display( "arctan(1/7) = %f", arctan(1.0/7.0) ) ;
$display( "arctan(3/79) = %f", arctan(3.0/79.0) ) ;
$display( "pi/4 ?= %f", 5*arctan(1.0/7.0)+2*arctan(3.0/79.0) ) ;
$display( "arcsin(1.0): %f", arcsin(1.0) ) ;
$display( "cos(pi/2): %f", cos(MATH_PI_OVER_2)) ;
$display( "arccos(cos(pi/2)): %f", arccos(cos(MATH_PI_OVER_2)) ) ;
$display( "cos(0): %f", cos(0) ) ;
$display( "cos(MATH_PI_OVER_4): %f", cos(MATH_PI_OVER_4) ) ;
$display( "cos(MATH_PI_OVER_2): %f", cos(MATH_PI_OVER_2) ) ;
$display( "cos(3*MATH_PI_OVER_4): %f", cos(3*MATH_PI_OVER_4) ) ;
$display( "cos(MATH_PI): %f", cos(MATH_PI) ) ;
$display( "cos(5*MATH_PI_OVER_4): %f", cos(5*MATH_PI_OVER_4) ) ;
$display( "cos(6*MATH_PI_OVER_4): %f", cos(6*MATH_PI_OVER_4) ) ;
$display( "cos(7*MATH_PI_OVER_4): %f", cos(7*MATH_PI_OVER_4) ) ;
$display( "cos(8*MATH_PI_OVER_4): %f", cos(8*MATH_PI_OVER_4) ) ;
end*/
endmodule