Files
UHD-Fairwaves/host/utils/umtrx_cal_tx_dc_offset.cpp
Alexander Chemeris e64d3d5940 host: Update automatic DC calibration utility.
This verion of the DC calibration utility delivers predictable calibration
results, almost as good as manual calibration with a spectrum analyzer.

New features include writing calibration to a file in a format supported
by the UHD, as well as single run with measurement output to stdout.
2015-05-07 17:35:35 -04:00

389 lines
16 KiB
C++

//
// Copyright 2010 Ettus Research LLC
// Copyright 2012 Fairwaves LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "usrp_cal_utils.hpp"
#include <uhd/utils/thread_priority.hpp>
#include <uhd/utils/safe_main.hpp>
#include <uhd/utils/paths.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <boost/program_options.hpp>
#include <boost/format.hpp>
#include <boost/thread/thread.hpp>
#include <boost/math/special_functions/round.hpp>
#include <boost/random.hpp>
#include <iostream>
#include <complex>
#include <cmath>
#include <ctime>
namespace po = boost::program_options;
/***********************************************************************
* Transmit thread
**********************************************************************/
static void tx_thread(uhd::usrp::multi_usrp::sptr usrp, const double tx_wave_freq, const double tx_wave_ampl){
uhd::set_thread_priority_safe();
//create a transmit streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::tx_streamer::sptr tx_stream = usrp->get_tx_stream(stream_args);
//setup variables and allocate buffer
uhd::tx_metadata_t md;
md.has_time_spec = false;
std::vector<samp_type> buff(tx_stream->get_max_num_samps()*10);
//values for the wave table lookup
size_t index = 0;
const double tx_rate = usrp->get_tx_rate();
const size_t step = boost::math::iround(wave_table_len * tx_wave_freq/tx_rate);
wave_table table(tx_wave_ampl);
//fill buff and send until interrupted
while (not boost::this_thread::interruption_requested()){
for (size_t i = 0; i < buff.size(); i++){
buff[i] = table(index += step);
buff[i] = samp_type(0, 0); //using no-power transmit to cal with
}
tx_stream->send(&buff.front(), buff.size(), md);
}
//send a mini EOB packet
md.end_of_burst = true;
tx_stream->send("", 0, md);
}
/***********************************************************************
* Tune RX and TX routine
**********************************************************************/
static double tune_rx_and_tx(uhd::usrp::multi_usrp::sptr usrp, const double tx_lo_freq, const double rx_offset){
//tune the transmitter with no cordic
uhd::tune_request_t tx_tune_req(tx_lo_freq);
tx_tune_req.dsp_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
tx_tune_req.dsp_freq = 0;
usrp->set_tx_freq(tx_tune_req);
//tune the receiver
usrp->set_rx_freq(uhd::tune_request_t(usrp->get_tx_freq(), rx_offset));
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
return usrp->get_tx_freq();
}
/***********************************************************************
* Calibration method: Downhill
**********************************************************************/
static result_t calibrate_downhill(uhd::property<uint8_t> &dc_i_prop, uhd::property<uint8_t> &dc_q_prop,
uhd::rx_streamer::sptr rx_stream,
std::vector<samp_type > &buff,
const size_t nsamps,
double tx_lo,
double bb_dc_freq,
double rx_rate,
int verbose,
bool debug_raw_data)
{
//bounds and results from searching
double lowest_offset;
int dc_i_start, dc_i_stop, dc_i_step;
int dc_q_start, dc_q_stop, dc_q_step;
int best_dc_i = 128, best_dc_q = 128;
//capture initial uncorrected value
dc_i_prop.set(best_dc_i);
dc_q_prop.set(best_dc_q);
capture_samples(rx_stream, buff, nsamps);
const double initial_dc_dbrms = compute_tone_dbrms(buff, bb_dc_freq/rx_rate);
lowest_offset = initial_dc_dbrms;
if (verbose) printf("initial_dc_dbrms = %2.0f dB\n", initial_dc_dbrms);
if (debug_raw_data) write_samples_to_file(buff, "initial_samples.dat");
for (size_t i = 0; i < 10; i++)
{
if (verbose) printf(" iteration %ld\n", i);
switch (i) {
case 0:
dc_i_start = 0;
dc_i_stop = 256;
dc_q_start = 0;
dc_q_stop = 256;
dc_i_step = 10;
dc_q_step = 10;
break;
case 1:
dc_i_start = best_dc_i - 15;
dc_i_stop = best_dc_i + 15;
dc_q_start = best_dc_q - 15;
dc_q_stop = best_dc_q + 15;
dc_i_step = 1;
dc_q_step = 1;
break;
default:
dc_i_start = best_dc_i - 3;
dc_i_stop = best_dc_i + 3;
dc_q_start = best_dc_q - 3;
dc_q_stop = best_dc_q + 3;
dc_i_step = 1;
dc_q_step = 1;
break;
};
if (verbose) printf(" I in [%d; %d) step %d Q = %d\n",
dc_i_start, dc_i_stop, dc_i_step, best_dc_q);
dc_q_prop.set(best_dc_q);
for (int dc_i = dc_i_start; dc_i < dc_i_stop; dc_i += dc_i_step){
if (verbose) printf(" dc_i = %d", dc_i);
dc_i_prop.set(dc_i);
//receive some samples
capture_samples(rx_stream, buff, nsamps);
const double dc_dbrms = compute_tone_dbrms(buff, bb_dc_freq/rx_rate);
if (verbose) printf(" dc_dbrms = %2.0f dB", dc_dbrms);
if (dc_dbrms < lowest_offset){
lowest_offset = dc_dbrms;
best_dc_i = dc_i;
if (verbose) printf(" *");
if (debug_raw_data) write_samples_to_file(buff, "best_samples.dat");
}
if (verbose) printf("\n");
}
if (verbose) printf(" I = %d Q in [%d; %d) step %d\n",
best_dc_i, dc_q_start, dc_q_stop, dc_q_step);
dc_i_prop.set(best_dc_i);
for (int dc_q = dc_q_start; dc_q < dc_q_stop; dc_q += dc_q_step){
if (verbose) printf(" dc_q = %d", dc_q);
dc_q_prop.set(dc_q);
//receive some samples
capture_samples(rx_stream, buff, nsamps);
const double dc_dbrms = compute_tone_dbrms(buff, bb_dc_freq/rx_rate);
if (verbose) printf(" dc_dbrms = %2.0f dB", dc_dbrms);
if (dc_dbrms < lowest_offset){
lowest_offset = dc_dbrms;
best_dc_q = dc_q;
if (verbose) printf(" *");
if (debug_raw_data) write_samples_to_file(buff, "best_samples.dat");
}
if (verbose) printf("\n");
}
}
if (verbose) printf(" best_dc_i = %d best_dc_q = %d", best_dc_i, best_dc_q);
if (verbose) printf(" lowest_offset = %2.0f dB delta = %2.0f dB\n", lowest_offset, initial_dc_dbrms - lowest_offset);
// Calibration result
result_t result;
result.freq = tx_lo;
result.real_corr = best_dc_i;
result.imag_corr = best_dc_q;
result.best = lowest_offset;
result.delta = initial_dc_dbrms - lowest_offset;
if (verbose){
std::cout << boost::format("TX DC: %f MHz: lowest offset %f dB, corrected %f dB") % (tx_lo/1e6) % result.best % result.delta << std::endl;
}
else std::cout << "." << std::flush;
// Output to console
std::cout
<< result.freq/1e6 << " MHz "
<< "I/Q = " << result.real_corr << "/" << result.imag_corr << " "
<< "(" << dc_offset_int2double(result.real_corr) << "/"
<< dc_offset_int2double(result.imag_corr) << ") "
<< "leakage = " << result.best << " dB, "
<< "improvement = " << result.delta << " dB\n"
;
return result;
}
/***********************************************************************
* Main
**********************************************************************/
int UHD_SAFE_MAIN(int argc, char *argv[]){
std::string args;
int vga1_gain, vga2_gain, rx_gain;
double tx_wave_freq, tx_wave_ampl, rx_offset;
double freq_start, freq_stop, freq_step;
size_t nsamps;
size_t ntrials;
std::string which;
int single_test_i, single_test_q;
po::options_description desc("Allowed options");
desc.add_options()
("help", "help message")
("verbose", "enable some verbose")
("debug_raw_data", "save raw captured signals to files")
("args", po::value<std::string>(&args)->default_value(""), "device address args [default = \"\"]")
("vga1", po::value<int>(&vga1_gain)->default_value(-20), "LMS6002D Tx VGA1 gain [-35 to -4]")
("vga2", po::value<int>(&vga2_gain)->default_value(22), "LMS6002D Tx VGA2 gain [0 to 25]")
("rx_gain", po::value<int>(&rx_gain)->default_value(100), "LMS6002D Rx combined gain [0 to 156]")
("tx_wave_freq", po::value<double>(&tx_wave_freq)->default_value(50e3), "Transmit wave frequency in Hz")
("tx_wave_ampl", po::value<double>(&tx_wave_ampl)->default_value(0.7), "Transmit wave amplitude in counts")
("rx_offset", po::value<double>(&rx_offset)->default_value(300e3), "RX LO offset from the TX LO in Hz")
("freq_start", po::value<double>(&freq_start), "Frequency start in Hz (do not specify for default)")
("freq_stop", po::value<double>(&freq_stop), "Frequency stop in Hz (do not specify for default)")
("freq_step", po::value<double>(&freq_step)->default_value(default_freq_step), "Step size for LO sweep in Hz")
("nsamps", po::value<size_t>(&nsamps)->default_value(default_num_samps), "Samples per data capture")
("ntrials", po::value<size_t>(&ntrials)->default_value(1), "Num trials per TX LO")
("which", po::value<std::string>(&which)->default_value("A"), "Which chain A or B?")
("single_test", "Perform a single measurement and exit (freq = freq_start, I = single_test_i, Q = single_test_q]")
("single_test_i", po::value<int>(&single_test_i)->default_value(128), "Only in the single test mode! I channel calibration value [0 to 255]")
("single_test_q", po::value<int>(&single_test_q)->default_value(128), "Only in the single test mode! Q channel calibration value [0 to 255]")
("append", "Append measurements to the calibratoin file instead of rewriting [default=overwrite]")
("int_vals", "Write calibration values as raw LMS6002D integer values, incompatible with UHD [default=no]")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
//print the help message
if (vm.count("help")){
std::cout << boost::format("USRP Generate TX DC Offset Calibration Table %s") % desc << std::endl;
std::cout <<
"This application measures leakage between RX and TX on an XCVR daughterboard to self-calibrate.\n"
<< std::endl;
return ~0;
}
//create a usrp device
std::cout << std::endl;
std::cout << boost::format("Creating the usrp device with: %s...") % args << std::endl;
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(args);
// Do we have an UmTRX here?
uhd::property_tree::sptr tree = usrp->get_device()->get_tree();
const uhd::fs_path mb_path = "/mboards/0";
const std::string mb_name = tree->access<std::string>(mb_path / "name").get();
if (mb_name.find("UMTRX") == std::string::npos){
throw std::runtime_error("This utility supports only UmTRX hardware.");
}
//set subdev spec
usrp->set_rx_subdev_spec(which+":0");
usrp->set_tx_subdev_spec(which+":0");
//set the antennas to cal
if (not uhd::has(usrp->get_rx_antennas(), "CAL") or not uhd::has(usrp->get_tx_antennas(), "CAL")){
throw std::runtime_error("This board does not have the CAL antenna option, cannot self-calibrate.");
}
usrp->set_rx_antenna("CAL");
usrp->set_tx_antenna("CAL");
//set optimum defaults
// GSM symbol rate * 4
usrp->set_tx_rate(13e6/12);
usrp->set_rx_rate(13e6/12);
// 500kHz LPF
usrp->set_tx_bandwidth(1e6);
usrp->set_rx_bandwidth(1e6);
// Our recommended VGA1/VGA2
usrp->set_tx_gain(vga1_gain, "VGA1");
usrp->set_tx_gain(vga2_gain, "VGA2");
usrp->set_rx_gain(rx_gain);
if (vm.count("verbose")) printf("actual Tx VGA1 gain = %.0f dB\n", usrp->get_tx_gain("VGA1"));
if (vm.count("verbose")) printf("actual Tx VGA2 gain = %.0f dB\n", usrp->get_tx_gain("VGA2"));
if (vm.count("verbose")) printf("actual Rx gain = %.0f dB\n", usrp->get_rx_gain());
//create a receive streamer
uhd::stream_args_t stream_args("fc32"); //complex floats
uhd::rx_streamer::sptr rx_stream = usrp->get_rx_stream(stream_args);
//create a transmitter thread
boost::thread_group threads;
threads.create_thread(boost::bind(&tx_thread, usrp, tx_wave_freq, tx_wave_ampl));
//re-usable buffer for samples
std::vector<samp_type> buff;
//store the results here
std::vector<result_t> results;
const uhd::fs_path tx_fe_path = mb_path+"/dboards/"+which+"/tx_frontends/0";
uhd::property<uint8_t> &dc_i_prop = tree->access<uint8_t>(tx_fe_path / "lms6002d/tx_dc_i/value");
uhd::property<uint8_t> &dc_q_prop = tree->access<uint8_t>(tx_fe_path / "lms6002d/tx_dc_q/value");
if (not vm.count("freq_start")) freq_start = usrp->get_tx_freq_range().start() + 50e6;
if (not vm.count("freq_stop")) freq_stop = usrp->get_tx_freq_range().stop() - 50e6;
for (double tx_lo_i = freq_start; tx_lo_i <= freq_stop; tx_lo_i += freq_step){
const double tx_lo = tune_rx_and_tx(usrp, tx_lo_i, rx_offset);
//frequency constants for this tune event
const double actual_rx_rate = usrp->get_rx_rate();
const double actual_tx_freq = usrp->get_tx_freq();
const double actual_rx_freq = usrp->get_rx_freq();
const double bb_dc_freq = actual_tx_freq - actual_rx_freq;
if (vm.count("verbose")) printf("actual_rx_rate = %0.2f MHz\n", actual_rx_rate/1e6);
if (vm.count("verbose")) printf("actual_tx_freq = %0.2f MHz\n", actual_tx_freq/1e6);
if (vm.count("verbose")) printf("actual_rx_freq = %0.2f MHz\n", actual_rx_freq/1e6);
if (vm.count("verbose")) printf("bb_dc_freq = %0.2f MHz\n", bb_dc_freq/1e6);
for (size_t trial_no = 0; trial_no < ntrials; trial_no++)
{
if (vm.count("single_test"))
{
// Perform a single test
dc_i_prop.set(single_test_i);
dc_q_prop.set(single_test_q);
//receive some samples
capture_samples(rx_stream, buff, nsamps);
const double dc_dbrms = compute_tone_dbrms(buff, bb_dc_freq/actual_rx_rate);
printf("I = %d Q = %d ", single_test_i, single_test_q);
printf("dc_dbrms = %2.1f dB\n", dc_dbrms);
if (vm.count("debug_raw_data")) write_samples_to_file(buff, "best_samples.dat");
} else {
// Perform normal calibration
results.push_back(calibrate_downhill(dc_i_prop, dc_q_prop,
rx_stream,
buff,
nsamps,
tx_lo,
bb_dc_freq,
actual_rx_rate,
vm.count("verbose"),
vm.count("debug_raw_data")));
}
}
}
std::cout << std::endl;
//stop the transmitter
threads.interrupt_all();
threads.join_all();
if (not vm.count("single_test"))
store_results(usrp, results, "tx", "dc", which, vm.count("append"), vm.count("int_vals"));
return 0;
}