Files
openbts-2.8/apps/OpenBTS.cpp
kurtis.heimerl 478221e5d3 Correction of trivial warnings.
git-svn-id: http://wush.net/svn/range/software/public/openbts/trunk@4670 19bc5d8c-e614-43d4-8b26-e1612bc8e597
2012-12-22 04:30:56 +00:00

555 lines
18 KiB
C++

/*
* Copyright 2008, 2009, 2010 Free Software Foundation, Inc.
* Copyright 2010 Kestrel Signal Processing, Inc.
* Copyright 2011,2012 Range Networks, Inc.
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <fstream>
#include <Configuration.h>
// Load configuration from a file.
ConfigurationTable gConfig("/etc/OpenBTS/OpenBTS.db");
// Set up the performance reporter.
#include <Reporting.h>
ReportingTable gReports(gConfig.getStr("Control.Reporting.StatsTable","/var/log/OpenBTSStats.db").c_str());
#include <TRXManager.h>
#include <GSML1FEC.h>
#include <GSMConfig.h>
#include <GSMSAPMux.h>
#include <GSML3RRMessages.h>
#include <GSMLogicalChannel.h>
#include <ControlCommon.h>
#include <TransactionTable.h>
#include <SIPInterface.h>
#include <Globals.h>
#include <Logger.h>
#include <CLI.h>
#include <PowerManager.h>
#include <Configuration.h>
#include <PhysicalStatus.h>
#include <SubscriberRegistry.h>
#include <sys/wait.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <signal.h>
using namespace std;
using namespace GSM;
const char* gDateTime = __DATE__ " " __TIME__;
// All of the other globals that rely on the global configuration file need to
// be declared here.
// The TMSI Table.
Control::TMSITable gTMSITable;
// The transaction table.
Control::TransactionTable gTransactionTable;
// Physical status reporting
GSM::PhysicalStatus gPhysStatus;
// The global SIPInterface object.
SIP::SIPInterface gSIPInterface;
// Configure the BTS object based on the config file.
// So don't create this until AFTER loading the config file.
GSMConfig gBTS;
// Our interface to the software-defined radio.
TransceiverManager gTRX(gConfig.getNum("GSM.Radio.ARFCNs"), gConfig.getStr("TRX.IP").c_str(), gConfig.getNum("TRX.Port"));
// Subscriber registry
SubscriberRegistry gSubscriberRegistry;
/** Define a function to call any time the configuration database changes. */
void purgeConfig(void*,int,char const*, char const*, sqlite3_int64)
{
LOG(INFO) << "purging configuration cache";
gConfig.purge();
gBTS.regenerateBeacon();
}
const char* transceiverPath = "./transceiver";
pid_t gTransceiverPid = 0;
void startTransceiver()
{
// kill any stray transceiver process
system("killall transceiver");
// Start the transceiver binary, if the path is defined.
// If the path is not defined, the transceiver must be started by some other process.
char TRXnumARFCN[16];
sprintf(TRXnumARFCN,"%1d", static_cast<int>(gConfig.getNum("GSM.Radio.ARFCNs")));
LOG(NOTICE) << "starting transceiver " << transceiverPath << " " << TRXnumARFCN;
gTransceiverPid = vfork();
LOG_ASSERT(gTransceiverPid>=0);
if (gTransceiverPid==0) {
// Pid==0 means this is the process that starts the transceiver.
execlp(transceiverPath,transceiverPath,TRXnumARFCN,NULL);
LOG(EMERG) << "cannot find " << transceiverPath;
_exit(1);
} else {
int status;
waitpid(gTransceiverPid, &status,0);
LOG(EMERG) << "Transceiver quit with status " << status << ". Exiting.";
exit(2);
}
}
void createStats()
{
// count of OpenBTS start events
gReports.create("OpenBTS.Starts");
// count of exit events driven from the CLI
gReports.create("OpenBTS.Exit.Normal.CLI");
// count of watchdog restarts
gReports.create("OpenBTS.Exit.Error.Watchdog");
// count of aborts due to problems with CLI socket
gReports.create("OpenBTS.Exit.Error.CLISocket");
// count of aborts due to loss of transceiver heartbeat
gReports.create("OpenBTS.Exit.Error.TransceiverHeartbeat");
// count of aborts due to underfined nono-optional configuration parameters
gReports.create("OpenBTS.Exit.Error.ConfigurationParameterNotFound");
// count of CLI commands sent to OpenBTS
gReports.create("OpenBTS.CLI.Command");
// count of CLI commands where responses could not be returned
gReports.create("OpenBTS.CLI.Command.ResponseFailure");
// count of SIP transactions that failed with 3xx responses from the remote end
gReports.create("OpenBTS.SIP.Failed.Remote.3xx");
// count of SIP transactions that failed with 4xx responses from the remote end
gReports.create("OpenBTS.SIP.Failed.Remote.4xx");
// count of SIP transactions that failed with 5xx responses from the remote end
gReports.create("OpenBTS.SIP.Failed.Remote.5xx");
// count of SIP transactions that failed with 6xx responses from the remote end
gReports.create("OpenBTS.SIP.Failed.Remote.6xx");
// count of SIP transactions that failed with unrecognized responses from the remote end
gReports.create("OpenBTS.SIP.Failed.Remote.xxx");
// count of SIP transactions that failed due to local-end errors
gReports.create("OpenBTS.SIP.Failed.Local");
// count of timeout events on SIP socket reads
gReports.create("OpenBTS.SIP.ReadTimeout");
// count of SIP messages that were never properly acked
gReports.create("OpenBTS.SIP.LostProxy");
// count of SIP message not sent due to unresolvable host name
gReports.create("OpenBTS.SIP.UnresolvedHostname");
// count of INVITEs received in the SIP layer
gReports.create("OpenBTS.SIP.INVITE.In");
// count of SOS INVITEs sent from the SIP layer; these are not included in ..INVITE.OUT
gReports.create("OpenBTS.SIP.INVITE-SOS.Out");
// count of INVITEs sent from the in SIP layer
gReports.create("OpenBTS.SIP.INVITE.Out");
// count of INVITE-OKs sent from the in SIP layer (connection established)
gReports.create("OpenBTS.SIP.INVITE-OK.Out");
// count of MESSAGEs received in the in SIP layer
gReports.create("OpenBTS.SIP.MESSAGE.In");
// count of MESSAGESs sent from the SIP layer
gReports.create("OpenBTS.SIP.MESSAGE.Out");
// count of REGISTERSs sent from the SIP layer
gReports.create("OpenBTS.SIP.REGISTER.Out");
// count of BYEs sent from the SIP layer
gReports.create("OpenBTS.SIP.BYE.Out");
// count of BYEs received in the SIP layer
gReports.create("OpenBTS.SIP.BYE.In");
// count of BYE-OKs sent from SIP layer (final disconnect handshake)
gReports.create("OpenBTS.SIP.BYE-OK.Out");
// count of BYE-OKs received in SIP layer (final disconnect handshake)
gReports.create("OpenBTS.SIP.BYE-OK.In");
// count of initiated LUR attempts
gReports.create("OpenBTS.GSM.MM.LUR.Start");
// count of LUR attempts where the server timed out
gReports.create("OpenBTS.GSM.MM.LUR.Timeout");
//gReports.create("OpenBTS.GSM.MM.LUR.Success");
//gReports.create("OpenBTS.GSM.MM.LUR.NotFound");
//gReports.create("OpenBTS.GSM.MM.LUR.Allowed");
//gReports.create("OpenBTS.GSM.MM.LUR.Rejected");
// count of all authentication attempts
gReports.create("OpenBTS.GSM.MM.Authenticate.Request");
// count of authentication attempts the succeeded
gReports.create("OpenBTS.GSM.MM.Authenticate.Success");
// count of authentication attempts that failed
gReports.create("OpenBTS.GSM.MM.Authenticate.Failure");
// count of the number of TMSIs assigned to users
gReports.create("OpenBTS.GSM.MM.TMSI.Assigned");
//gReports.create("OpenBTS.GSM.MM.TMSI.Unknown");
// count of CM Service requests for MOC
gReports.create("OpenBTS.GSM.MM.CMServiceRequest.MOC");
// count of CM Service requests for emergency calls
gReports.create("OpenBTS.GSM.MM.CMServiceRequest.SOS");
// count of CM Service requests for MOSMS
gReports.create("OpenBTS.GSM.MM.CMServiceRequest.MOSMS");
// count of CM Service requests for services we don't support
gReports.create("OpenBTS.GSM.MM.CMServiceRequest.Unhandled");
// count of mobile-originated SMS submissions initiated
gReports.create("OpenBTS.GSM.SMS.MOSMS.Start");
// count of mobile-originated SMS submissions competed (got CP-ACK for RP-ACK)
gReports.create("OpenBTS.GSM.SMS.MOSMS.Complete");
// count of mobile-temrinated SMS deliveries initiated
gReports.create("OpenBTS.GSM.SMS.MTSMS.Start");
// count of mobile-temrinated SMS deliveries completed (got RP-ACK)
gReports.create("OpenBTS.GSM.SMS.MTSMS.Complete");
// count of mobile-originated setup messages
gReports.create("OpenBTS.GSM.CC.MOC.Setup");
// count of mobile-terminated setup messages
gReports.create("OpenBTS.GSM.CC.MTC.Setup");
// count of mobile-terminated release messages
gReports.create("OpenBTS.GSM.CC.MTD.Release");
// count of mobile-originated disconnect messages
gReports.create("OpenBTS.GSM.CC.MOD.Disconnect");
// total number of minutes of carried calls
gReports.create("OpenBTS.GSM.CC.CallMinutes");
// count of CS (non-GPRS) channel assignments
gReports.create("OpenBTS.GSM.RR.ChannelAssignment");
//gReports.create("OpenBTS.GSM.RR.ChannelRelease");
// count of number of times the beacon was regenerated
gReports.create("OpenBTS.GSM.RR.BeaconRegenerated");
// count of successful channel assignments
gReports.create("OpenBTS.GSM.RR.ChannelSiezed");
//gReports.create("OpenBTS.GSM.RR.LinkFailure");
//gReports.create("OpenBTS.GSM.RR.Paged.IMSI");
//gReports.create("OpenBTS.GSM.RR.Paged.TMSI");
//gReports.create("OpenBTS.GSM.RR.Handover.Inbound.Request");
//gReports.create("OpenBTS.GSM.RR.Handover.Inbound.Accept");
//gReports.create("OpenBTS.GSM.RR.Handover.Inbound.Success");
//gReports.create("OpenBTS.GSM.RR.Handover.Outbound.Request");
//gReports.create("OpenBTS.GSM.RR.Handover.Outbound.Accept");
//gReports.create("OpenBTS.GSM.RR.Handover.Outbound.Success");
// histogram of timing advance for accepted RACH bursts
gReports.create("OpenBTS.GSM.RR.RACH.TA.Accepted",0,63);
//gReports.create("Transceiver.StaleBurst");
//gReports.create("Transceiver.Command.Received");
//gReports.create("OpenBTS.TRX.Command.Sent");
//gReports.create("OpenBTS.TRX.Command.Failed");
//gReports.create("OpenBTS.TRX.FailedStart");
//gReports.create("OpenBTS.TRX.LostLink");
}
int main(int argc, char *argv[])
{
// TODO: Properly parse and handle any arguments
if (argc > 1) {
for (int argi = 0; argi < argc; argi++) {
if (!strcmp(argv[argi], "--version") ||
!strcmp(argv[argi], "-v")) {
cout << gVersionString << endl;
}
}
return 0;
}
createStats();
gReports.incr("OpenBTS.Starts");
int sock = socket(AF_UNIX,SOCK_DGRAM,0);
if (sock<0) {
perror("creating CLI datagram socket");
LOG(ALERT) << "cannot create socket for CLI";
gReports.incr("OpenBTS.Exit.CLI.Socket");
exit(1);
}
try {
srandom(time(NULL));
gConfig.setUpdateHook(purgeConfig);
gLogInit("openbts",gConfig.getStr("Log.Level").c_str(),LOG_LOCAL7);
LOG(ALERT) << "OpenBTS starting, ver " << VERSION << " build date " << __DATE__;
COUT("\n\n" << gOpenBTSWelcome << "\n");
gTMSITable.open(gConfig.getStr("Control.Reporting.TMSITable").c_str());
gTransactionTable.init(gConfig.getStr("Control.Reporting.TransactionTable").c_str());
gPhysStatus.open(gConfig.getStr("Control.Reporting.PhysStatusTable").c_str());
gBTS.init();
gSubscriberRegistry.init();
gParser.addCommands();
COUT("\nStarting the system...");
// is the radio running?
// Start the transceiver interface.
LOG(INFO) << "checking transceiver";
//gTRX.ARFCN(0)->powerOn();
//sleep(gConfig.getNum("TRX.Timeout.Start",2));
bool haveTRX = gTRX.ARFCN(0)->powerOn();
Thread transceiverThread;
if (!haveTRX) {
transceiverThread.start((void*(*)(void*)) startTransceiver, NULL);
// sleep to let the FPGA code load
// TODO: we should be "pinging" the radio instead of sleeping
sleep(5);
} else {
LOG(NOTICE) << "transceiver already running";
}
// Start the SIP interface.
gSIPInterface.start();
//
// Configure the radio.
//
gTRX.start();
// Set up the interface to the radio.
// Get a handle to the C0 transceiver interface.
ARFCNManager* C0radio = gTRX.ARFCN(0);
// Tuning.
// Make sure its off for tuning.
//C0radio->powerOff();
// Get the ARFCN list.
unsigned C0 = gConfig.getNum("GSM.Radio.C0");
unsigned numARFCNs = gConfig.getNum("GSM.Radio.ARFCNs");
for (unsigned i=0; i<numARFCNs; i++) {
// Tune the radios.
unsigned ARFCN = C0 + i*2;
LOG(INFO) << "tuning TRX " << i << " to ARFCN " << ARFCN;
ARFCNManager* radio = gTRX.ARFCN(i);
radio->tune(ARFCN);
}
// Send either TSC or full BSIC depending on radio need
if (gConfig.getBool("GSM.Radio.NeedBSIC")) {
// Send BSIC to
C0radio->setBSIC(gBTS.BSIC());
} else {
// Set TSC same as BCC everywhere.
C0radio->setTSC(gBTS.BCC());
}
// Set maximum expected delay spread.
C0radio->setMaxDelay(gConfig.getNum("GSM.Radio.MaxExpectedDelaySpread"));
// Set Receiver Gain
C0radio->setRxGain(gConfig.getNum("GSM.Radio.RxGain"));
// Turn on and power up.
C0radio->powerOn();
C0radio->setPower(gConfig.getNum("GSM.Radio.PowerManager.MinAttenDB"));
//
// Create a C-V channel set on C0T0.
//
// C-V on C0T0
C0radio->setSlot(0,5);
// SCH
SCHL1FEC SCH;
SCH.downstream(C0radio);
SCH.open();
// FCCH
FCCHL1FEC FCCH;
FCCH.downstream(C0radio);
FCCH.open();
// BCCH
BCCHL1FEC BCCH;
BCCH.downstream(C0radio);
BCCH.open();
// RACH
RACHL1FEC RACH(gRACHC5Mapping);
RACH.downstream(C0radio);
RACH.open();
// CCCHs
CCCHLogicalChannel CCCH0(gCCCH_0Mapping);
CCCH0.downstream(C0radio);
CCCH0.open();
CCCHLogicalChannel CCCH1(gCCCH_1Mapping);
CCCH1.downstream(C0radio);
CCCH1.open();
CCCHLogicalChannel CCCH2(gCCCH_2Mapping);
CCCH2.downstream(C0radio);
CCCH2.open();
// use CCCHs as AGCHs
gBTS.addAGCH(&CCCH0);
gBTS.addAGCH(&CCCH1);
gBTS.addAGCH(&CCCH2);
// C-V C0T0 SDCCHs
SDCCHLogicalChannel C0T0SDCCH[4] = {
SDCCHLogicalChannel(0,0,gSDCCH_4_0),
SDCCHLogicalChannel(0,0,gSDCCH_4_1),
SDCCHLogicalChannel(0,0,gSDCCH_4_2),
SDCCHLogicalChannel(0,0,gSDCCH_4_3),
};
Thread C0T0SDCCHControlThread[4];
for (int i=0; i<4; i++) {
C0T0SDCCH[i].downstream(C0radio);
C0T0SDCCHControlThread[i].start((void*(*)(void*))Control::DCCHDispatcher,&C0T0SDCCH[i]);
C0T0SDCCH[i].open();
gBTS.addSDCCH(&C0T0SDCCH[i]);
}
//
// Configure the other slots.
//
// Count configured slots.
unsigned sCount = 1;
if (gConfig.defines("GSM.Channels.C1sFirst")) {
// Create C-I slots.
for (int i=0; i<gConfig.getNum("GSM.Channels.NumC1s"); i++) {
gBTS.createCombinationI(gTRX,sCount/8,sCount%8);
sCount++;
}
}
// Create C-VII slots.
for (int i=0; i<gConfig.getNum("GSM.Channels.NumC7s"); i++) {
gBTS.createCombinationVII(gTRX,sCount/8,sCount%8);
sCount++;
}
if (!gConfig.defines("GSM.Channels.C1sFirst")) {
// Create C-I slots.
for (int i=0; i<gConfig.getNum("GSM.Channels.NumC1s"); i++) {
gBTS.createCombinationI(gTRX,sCount/8,sCount%8);
sCount++;
}
}
// Set up idle filling on C0 as needed.
while (sCount<8) {
gBTS.createCombination0(gTRX,sCount);
sCount++;
}
/*
Note: The number of different paging subchannels on
the CCCH is:
MAX(1,(3 - BS-AG-BLKS-RES)) * BS-PA-MFRMS
if CCCH-CONF = "001"
(9 - BS-AG-BLKS-RES) * BS-PA-MFRMS
for other values of CCCH-CONF
*/
// Set up the pager.
// Set up paging channels.
// HACK -- For now, use a single paging channel, since paging groups are broken.
gBTS.addPCH(&CCCH2);
// Be sure we are not over-reserving.
if (gConfig.getNum("GSM.Channels.SDCCHReserve",0)>=(int)gBTS.SDCCHTotal()) {
unsigned val = gBTS.SDCCHTotal() - 1;
LOG(CRIT) << "GSM.Channels.SDCCHReserve too big, changing to " << val;
gConfig.set("GSM.Channels.SDCCHReserve",val);
}
// OK, now it is safe to start the BTS.
gBTS.start();
cout << "\nsystem ready\n";
cout << "\nuse the OpenBTSCLI utility to access CLI\n";
LOG(INFO) << "system ready";
struct sockaddr_un cmdSockName;
cmdSockName.sun_family = AF_UNIX;
const char* sockpath = gConfig.getStr("CLI.SocketPath","/var/run/OpenBTS/command").c_str();
char rmcmd[strlen(sockpath)+5];
sprintf(rmcmd,"rm %s",sockpath);
system(rmcmd);
strcpy(cmdSockName.sun_path,sockpath);
if (bind(sock, (struct sockaddr *) &cmdSockName, sizeof(struct sockaddr_un))) {
perror("binding name to cmd datagram socket");
LOG(ALERT) << "cannot bind socket for CLI at " << sockpath;
gReports.incr("OpenBTS.Exit.CLI.Socket");
exit(1);
}
while (1) {
char cmdbuf[1000];
struct sockaddr_un source;
socklen_t sourceSize = sizeof(source);
int nread = recvfrom(sock,cmdbuf,sizeof(cmdbuf)-1,0,(struct sockaddr*)&source,&sourceSize);
gReports.incr("OpenBTS.CLI.Command");
cmdbuf[nread]='\0';
LOG(INFO) << "received command \"" << cmdbuf << "\" from " << source.sun_path;
std::ostringstream sout;
int res = gParser.process(cmdbuf,sout);
const std::string rspString= sout.str();
const char* rsp = rspString.c_str();
LOG(INFO) << "sending " << strlen(rsp) << "-char result to " << source.sun_path;
if (sendto(sock,rsp,strlen(rsp)+1,0,(struct sockaddr*)&source,sourceSize)<0) {
LOG(ERR) << "can't send CLI response to " << source.sun_path;
gReports.incr("OpenBTS.CLI.Command.ResponseFailure");
}
// res<0 means to exit the application
if (res<0) break;
gReports.incr("OpenBTS.Exit.Normal.CLI");
}
} // try
catch (ConfigurationTableKeyNotFound e) {
LOG(EMERG) << "required configuration parameter " << e.key() << " not defined, aborting";
gReports.incr("OpenBTS.Exit.Error.ConfigurationParamterNotFound");
}
//if (gTransceiverPid) kill(gTransceiverPid, SIGKILL);
close(sock);
}
// vim: ts=4 sw=4