mirror of
https://github.com/RangeNetworks/openbts.git
synced 2025-11-01 12:23:34 +00:00
Putting the actual OpenBTS P2.8 source code into the public SVN branch.
git-svn-id: http://wush.net/svn/range/software/public/openbts/trunk@2242 19bc5d8c-e614-43d4-8b26-e1612bc8e597
This commit is contained in:
441
CommonLibs/BitVector.h
Normal file
441
CommonLibs/BitVector.h
Normal file
@@ -0,0 +1,441 @@
|
||||
/*
|
||||
* Copyright 2008, 2009 Free Software Foundation, Inc.
|
||||
*
|
||||
* This software is distributed under the terms of the GNU Affero Public License.
|
||||
* See the COPYING file in the main directory for details.
|
||||
*
|
||||
* This use of this software may be subject to additional restrictions.
|
||||
* See the LEGAL file in the main directory for details.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU Affero General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU Affero General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Affero General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
*/
|
||||
|
||||
|
||||
#ifndef FECVECTORS_H
|
||||
#define FECVECTORS_H
|
||||
|
||||
#include "Vector.h"
|
||||
#include <stdint.h>
|
||||
|
||||
|
||||
class BitVector;
|
||||
class SoftVector;
|
||||
|
||||
|
||||
|
||||
/** Shift-register (LFSR) generator. */
|
||||
class Generator {
|
||||
|
||||
private:
|
||||
|
||||
uint64_t mCoeff; ///< polynomial coefficients. LSB is zero exponent.
|
||||
uint64_t mState; ///< shift register state. LSB is most recent.
|
||||
uint64_t mMask; ///< mask for reading state
|
||||
unsigned mLen; ///< number of bits used in shift register
|
||||
unsigned mLen_1; ///< mLen - 1
|
||||
|
||||
public:
|
||||
|
||||
Generator(uint64_t wCoeff, unsigned wLen)
|
||||
:mCoeff(wCoeff),mState(0),
|
||||
mMask((1ULL<<wLen)-1),
|
||||
mLen(wLen),mLen_1(wLen-1)
|
||||
{ assert(wLen<64); }
|
||||
|
||||
void clear() { mState=0; }
|
||||
|
||||
/**@name Accessors */
|
||||
//@{
|
||||
uint64_t state() const { return mState & mMask; }
|
||||
unsigned size() const { return mLen; }
|
||||
//@}
|
||||
|
||||
/**
|
||||
Calculate one bit of a syndrome.
|
||||
This is in the .h for inlining.
|
||||
*/
|
||||
void syndromeShift(unsigned inBit)
|
||||
{
|
||||
const unsigned fb = (mState>>(mLen_1)) & 0x01;
|
||||
mState = (mState<<1) ^ (inBit & 0x01);
|
||||
if (fb) mState ^= mCoeff;
|
||||
}
|
||||
|
||||
/**
|
||||
Update the generator state by one cycle.
|
||||
This is in the .h for inlining.
|
||||
*/
|
||||
void encoderShift(unsigned inBit)
|
||||
{
|
||||
const unsigned fb = ((mState>>(mLen_1)) ^ inBit) & 0x01;
|
||||
mState <<= 1;
|
||||
if (fb) mState ^= mCoeff;
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
/** Parity (CRC-type) generator and checker based on a Generator. */
|
||||
class Parity : public Generator {
|
||||
|
||||
protected:
|
||||
|
||||
unsigned mCodewordSize;
|
||||
|
||||
public:
|
||||
|
||||
Parity(uint64_t wCoefficients, unsigned wParitySize, unsigned wCodewordSize)
|
||||
:Generator(wCoefficients, wParitySize),
|
||||
mCodewordSize(wCodewordSize)
|
||||
{ }
|
||||
|
||||
/** Compute the parity word and write it into the target segment. */
|
||||
void writeParityWord(const BitVector& data, BitVector& parityWordTarget, bool invert=true);
|
||||
|
||||
/** Compute the syndrome of a received sequence. */
|
||||
uint64_t syndrome(const BitVector& receivedCodeword);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
Class to represent convolutional coders/decoders of rate 1/2, memory length 4.
|
||||
This is the "workhorse" coder for most GSM channels.
|
||||
*/
|
||||
class ViterbiR2O4 {
|
||||
|
||||
private:
|
||||
/**name Lots of precomputed elements so the compiler can optimize like hell. */
|
||||
//@{
|
||||
/**@name Core values. */
|
||||
//@{
|
||||
static const unsigned mIRate = 2; ///< reciprocal of rate
|
||||
static const unsigned mOrder = 4; ///< memory length of generators
|
||||
//@}
|
||||
/**@name Derived values. */
|
||||
//@{
|
||||
static const unsigned mIStates = 0x01 << mOrder; ///< number of states, number of survivors
|
||||
static const uint32_t mSMask = mIStates-1; ///< survivor mask
|
||||
static const uint32_t mCMask = (mSMask<<1) | 0x01; ///< candidate mask
|
||||
static const uint32_t mOMask = (0x01<<mIRate)-1; ///< ouput mask, all iRate low bits set
|
||||
static const unsigned mNumCands = mIStates*2; ///< number of candidates to generate during branching
|
||||
static const unsigned mDeferral = 6*mOrder; ///< deferral to be used
|
||||
//@}
|
||||
//@}
|
||||
|
||||
/** Precomputed tables. */
|
||||
//@{
|
||||
uint32_t mCoeffs[mIRate]; ///< polynomial for each generator
|
||||
uint32_t mStateTable[mIRate][2*mIStates]; ///< precomputed generator output tables
|
||||
uint32_t mGeneratorTable[2*mIStates]; ///< precomputed coder output table
|
||||
//@}
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
A candidate sequence in a Viterbi decoder.
|
||||
The 32-bit state register can support a deferral of 6 with a 4th-order coder.
|
||||
*/
|
||||
typedef struct candStruct {
|
||||
uint32_t iState; ///< encoder input associated with this candidate
|
||||
uint32_t oState; ///< encoder output associated with this candidate
|
||||
float cost; ///< cost (metric value), float to support soft inputs
|
||||
} vCand;
|
||||
|
||||
/** Clear a structure. */
|
||||
void clear(vCand& v)
|
||||
{
|
||||
v.iState=0;
|
||||
v.oState=0;
|
||||
v.cost=0;
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
|
||||
/**@name Survivors and candidates. */
|
||||
//@{
|
||||
vCand mSurvivors[mIStates]; ///< current survivor pool
|
||||
vCand mCandidates[2*mIStates]; ///< current candidate pool
|
||||
//@}
|
||||
|
||||
public:
|
||||
|
||||
unsigned iRate() const { return mIRate; }
|
||||
uint32_t cMask() const { return mCMask; }
|
||||
uint32_t stateTable(unsigned g, unsigned i) const { return mStateTable[g][i]; }
|
||||
unsigned deferral() const { return mDeferral; }
|
||||
|
||||
|
||||
ViterbiR2O4();
|
||||
|
||||
/** Set all cost metrics to zero. */
|
||||
void initializeStates();
|
||||
|
||||
/**
|
||||
Full cycle of the Viterbi algorithm: branch, metrics, prune, select.
|
||||
@return reference to minimum-cost candidate.
|
||||
*/
|
||||
const vCand& step(uint32_t inSample, const float *probs, const float *iprobs);
|
||||
|
||||
private:
|
||||
|
||||
/** Branch survivors into new candidates. */
|
||||
void branchCandidates();
|
||||
|
||||
/** Compute cost metrics for soft-inputs. */
|
||||
void getSoftCostMetrics(uint32_t inSample, const float *probs, const float *iprobs);
|
||||
|
||||
/** Select survivors from the candidate set. */
|
||||
void pruneCandidates();
|
||||
|
||||
/** Find the minimum cost survivor. */
|
||||
const vCand& minCost() const;
|
||||
|
||||
/**
|
||||
Precompute the state tables.
|
||||
@param g Generator index 0..((1/rate)-1)
|
||||
*/
|
||||
void computeStateTables(unsigned g);
|
||||
|
||||
/**
|
||||
Precompute the generator outputs.
|
||||
mCoeffs must be defined first.
|
||||
*/
|
||||
void computeGeneratorTable();
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
class BitVector : public Vector<char> {
|
||||
|
||||
|
||||
public:
|
||||
|
||||
/**@name Constructors. */
|
||||
//@{
|
||||
|
||||
/**@name Casts of Vector constructors. */
|
||||
//@{
|
||||
BitVector(char* wData, char* wStart, char* wEnd)
|
||||
:Vector<char>(wData,wStart,wEnd)
|
||||
{ }
|
||||
BitVector(size_t len=0):Vector<char>(len) {}
|
||||
BitVector(const Vector<char>& source):Vector<char>(source) {}
|
||||
BitVector(Vector<char>& source):Vector<char>(source) {}
|
||||
BitVector(const Vector<char>& source1, const Vector<char> source2):Vector<char>(source1,source2) {}
|
||||
//@}
|
||||
|
||||
/** Construct from a string of "0" and "1". */
|
||||
BitVector(const char* valString);
|
||||
//@}
|
||||
|
||||
/** Index a single bit. */
|
||||
bool bit(size_t index) const
|
||||
{
|
||||
// We put this code in .h for fast inlining.
|
||||
const char *dp = mStart+index;
|
||||
assert(dp<mEnd);
|
||||
return (*dp) & 0x01;
|
||||
}
|
||||
|
||||
/**@name Casts and overrides of Vector operators. */
|
||||
//@{
|
||||
BitVector segment(size_t start, size_t span)
|
||||
{
|
||||
char* wStart = mStart + start;
|
||||
char* wEnd = wStart + span;
|
||||
assert(wEnd<=mEnd);
|
||||
return BitVector(NULL,wStart,wEnd);
|
||||
}
|
||||
|
||||
BitVector alias()
|
||||
{ return segment(0,size()); }
|
||||
|
||||
const BitVector segment(size_t start, size_t span) const
|
||||
{ return (BitVector)(Vector<char>::segment(start,span)); }
|
||||
|
||||
BitVector head(size_t span) { return segment(0,span); }
|
||||
const BitVector head(size_t span) const { return segment(0,span); }
|
||||
BitVector tail(size_t start) { return segment(start,size()-start); }
|
||||
const BitVector tail(size_t start) const { return segment(start,size()-start); }
|
||||
//@}
|
||||
|
||||
|
||||
void zero() { fill(0); }
|
||||
|
||||
/**@name FEC operations. */
|
||||
//@{
|
||||
/** Calculate the syndrome of the vector with the given Generator. */
|
||||
uint64_t syndrome(Generator& gen) const;
|
||||
/** Calculate the parity word for the vector with the given Generator. */
|
||||
uint64_t parity(Generator& gen) const;
|
||||
/** Encode the signal with the GSM rate 1/2 convolutional encoder. */
|
||||
void encode(const ViterbiR2O4& encoder, BitVector& target);
|
||||
//@}
|
||||
|
||||
|
||||
/** Invert 0<->1. */
|
||||
void invert();
|
||||
|
||||
/**@name Byte-wise operations. */
|
||||
//@{
|
||||
/** Reverse an 8-bit vector. */
|
||||
void reverse8();
|
||||
/** Reverse groups of 8 within the vector (byte reversal). */
|
||||
void LSB8MSB();
|
||||
//@}
|
||||
|
||||
/**@name Serialization and deserialization. */
|
||||
//@{
|
||||
uint64_t peekField(size_t readIndex, unsigned length) const;
|
||||
uint64_t peekFieldReversed(size_t readIndex, unsigned length) const;
|
||||
uint64_t readField(size_t& readIndex, unsigned length) const;
|
||||
uint64_t readFieldReversed(size_t& readIndex, unsigned length) const;
|
||||
void fillField(size_t writeIndex, uint64_t value, unsigned length);
|
||||
void fillFieldReversed(size_t writeIndex, uint64_t value, unsigned length);
|
||||
void writeField(size_t& writeIndex, uint64_t value, unsigned length);
|
||||
void writeFieldReversed(size_t& writeIndex, uint64_t value, unsigned length);
|
||||
//@}
|
||||
|
||||
/** Sum of bits. */
|
||||
unsigned sum() const;
|
||||
|
||||
/** Reorder bits, dest[i] = this[map[i]]. */
|
||||
void map(const unsigned *map, size_t mapSize, BitVector& dest) const;
|
||||
|
||||
/** Reorder bits, dest[map[i]] = this[i]. */
|
||||
void unmap(const unsigned *map, size_t mapSize, BitVector& dest) const;
|
||||
|
||||
/** Pack into a char array. */
|
||||
void pack(unsigned char*) const;
|
||||
|
||||
/** Unpack from a char array. */
|
||||
void unpack(const unsigned char*);
|
||||
|
||||
/** Make a hexdump string. */
|
||||
void hex(std::ostream&) const;
|
||||
|
||||
/** Unpack from a hexdump string.
|
||||
* @returns true on success, false on error. */
|
||||
bool unhex(const char*);
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
std::ostream& operator<<(std::ostream&, const BitVector&);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
The SoftVector class is used to represent a soft-decision signal.
|
||||
Values 0..1 represent probabilities that a bit is "true".
|
||||
*/
|
||||
class SoftVector: public Vector<float> {
|
||||
|
||||
public:
|
||||
|
||||
/** Build a SoftVector of a given length. */
|
||||
SoftVector(size_t wSize=0):Vector<float>(wSize) {}
|
||||
|
||||
/** Construct a SoftVector from a C string of "0", "1", and "X". */
|
||||
SoftVector(const char* valString);
|
||||
|
||||
/** Construct a SoftVector from a BitVector. */
|
||||
SoftVector(const BitVector& source);
|
||||
|
||||
/**
|
||||
Wrap a SoftVector around a block of floats.
|
||||
The block will be delete[]ed upon desctuction.
|
||||
*/
|
||||
SoftVector(float *wData, unsigned length)
|
||||
:Vector<float>(wData,length)
|
||||
{}
|
||||
|
||||
SoftVector(float* wData, float* wStart, float* wEnd)
|
||||
:Vector<float>(wData,wStart,wEnd)
|
||||
{ }
|
||||
|
||||
/**
|
||||
Casting from a Vector<float>.
|
||||
Note that this is NOT pass-by-reference.
|
||||
*/
|
||||
SoftVector(Vector<float> source)
|
||||
:Vector<float>(source)
|
||||
{}
|
||||
|
||||
|
||||
/**@name Casts and overrides of Vector operators. */
|
||||
//@{
|
||||
SoftVector segment(size_t start, size_t span)
|
||||
{
|
||||
float* wStart = mStart + start;
|
||||
float* wEnd = wStart + span;
|
||||
assert(wEnd<=mEnd);
|
||||
return SoftVector(NULL,wStart,wEnd);
|
||||
}
|
||||
|
||||
SoftVector alias()
|
||||
{ return segment(0,size()); }
|
||||
|
||||
const SoftVector segment(size_t start, size_t span) const
|
||||
{ return (SoftVector)(Vector<float>::segment(start,span)); }
|
||||
|
||||
SoftVector head(size_t span) { return segment(0,span); }
|
||||
const SoftVector head(size_t span) const { return segment(0,span); }
|
||||
SoftVector tail(size_t start) { return segment(start,size()-start); }
|
||||
const SoftVector tail(size_t start) const { return segment(start,size()-start); }
|
||||
//@}
|
||||
|
||||
/** Decode soft symbols with the GSM rate-1/2 Viterbi decoder. */
|
||||
void decode(ViterbiR2O4 &decoder, BitVector& target) const;
|
||||
|
||||
/** Fill with "unknown" values. */
|
||||
void unknown() { fill(0.5F); }
|
||||
|
||||
/** Return a hard bit value from a given index by slicing. */
|
||||
bool bit(size_t index) const
|
||||
{
|
||||
const float *dp = mStart+index;
|
||||
assert(dp<mEnd);
|
||||
return (*dp)>0.5F;
|
||||
}
|
||||
|
||||
/** Slice the whole signal into bits. */
|
||||
BitVector sliced() const;
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
std::ostream& operator<<(std::ostream&, const SoftVector&);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#endif
|
||||
// vim: ts=4 sw=4
|
||||
Reference in New Issue
Block a user