Files
openbts/Transceiver52M/radioIOResamp.cpp
Kurtis Heimerl a0aa6c9206 transceiver, resamp: enlarge transmit resampler output buffer
It was possible to reach a state where a resampled burst would
overrun the transmit output buffer and corrupt the global
allocated signal vectors. The result was a segmentation fault
when attempting to access heap allocated signal vectors since
the pointers were garbage.

Whether the segfault occured or not appears to depend on the
memory location of the signal vector pointers, since it does
not occur on all systems.

Double buffer size to accomodate an incoming burst plus up to
a full chunk that may be remaining from the previous resampling
operation.

Signed-off-by: Thomas Tsou <ttsou@vt.edu>

git-svn-id: http://wush.net/svn/range/software/public/openbts/trunk@2691 19bc5d8c-e614-43d4-8b26-e1612bc8e597
2011-11-26 03:19:33 +00:00

325 lines
8.1 KiB
C++

/*
* Radio device interface with sample rate conversion
* Written by Thomas Tsou <ttsou@vt.edu>
*
* Copyright 2011 Free Software Foundation, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* See the COPYING file in the main directory for details.
*/
#include <radioInterface.h>
#include <Logger.h>
/* New chunk sizes for resampled rate */
#ifdef INCHUNK
#undef INCHUNK
#endif
#ifdef OUTCHUNK
#undef OUTCHUNK
#endif
/* Resampling parameters */
#define INRATE 65 * SAMPSPERSYM
#define INHISTORY INRATE * 2
#define INCHUNK INRATE * 9
#define OUTRATE 96 * SAMPSPERSYM
#define OUTHISTORY OUTRATE * 2
#define OUTCHUNK OUTRATE * 9
/* Resampler low pass filters */
signalVector *tx_lpf = 0;
signalVector *rx_lpf = 0;
/* Resampler history */
signalVector *tx_hist = 0;
signalVector *rx_hist = 0;
/* Resampler input buffer */
signalVector *tx_vec = 0;
signalVector *rx_vec = 0;
/*
* High rate (device facing) buffers
*
* Transmit side samples are pushed after each burst so accomodate
* a resampled burst plus up to a chunk left over from the previous
* resampling operation.
*
* Receive side samples always pulled with a fixed size.
*/
short tx_buf[INCHUNK * 2 * 4];
short rx_buf[OUTCHUNK * 2 * 2];
/*
* Utilities and Conversions
*
* Manipulate signal vectors dynamically for two reasons. For one,
* it's simpler. And two, it doesn't make any reasonable difference
* relative to the high overhead generated by the resampling.
*/
/* Concatenate signal vectors. Deallocate input vectors. */
signalVector *concat(signalVector *a, signalVector *b)
{
signalVector *vec = new signalVector(*a, *b);
delete a;
delete b;
return vec;
}
/* Segment a signal vector. Deallocate the input vector. */
signalVector *segment(signalVector *a, int indx, int sz)
{
signalVector *vec = new signalVector(sz);
a->segmentCopyTo(*vec, indx, sz);
delete a;
return vec;
}
/* Create a new signal vector from a short array. */
signalVector *short_to_sigvec(short *smpls, size_t sz)
{
int i;
signalVector *vec = new signalVector(sz);
signalVector::iterator itr = vec->begin();
for (i = 0; i < sz; i++) {
*itr++ = Complex<float>(smpls[2 * i + 0], smpls[2 * i + 1]);
}
return vec;
}
/* Convert and deallocate a signal vector into a short array. */
int sigvec_to_short(signalVector *vec, short *smpls)
{
int i;
signalVector::iterator itr = vec->begin();
for (i = 0; i < vec->size(); i++) {
smpls[2 * i + 0] = itr->real();
smpls[2 * i + 1] = itr->imag();
itr++;
}
delete vec;
return i;
}
/* Create a new signal vector from a float array. */
signalVector *float_to_sigvec(float *smpls, int sz)
{
int i;
signalVector *vec = new signalVector(sz);
signalVector::iterator itr = vec->begin();
for (i = 0; i < sz; i++) {
*itr++ = Complex<float>(smpls[2 * i + 0], smpls[2 * i + 1]);
}
return vec;
}
/* Convert and deallocate a signal vector into a float array. */
int sigvec_to_float(signalVector *vec, float *smpls)
{
int i;
signalVector::iterator itr = vec->begin();
for (i = 0; i < vec->size(); i++) {
smpls[2 * i + 0] = itr->real();
smpls[2 * i + 1] = itr->imag();
itr++;
}
delete vec;
return i;
}
/* Initialize resampling signal vectors */
void init_resampler(signalVector **lpf,
signalVector **buf,
signalVector **hist,
int tx)
{
int P, Q, taps, hist_len;
float cutoff_freq;
if (tx) {
LOG(INFO) << "Initializing Tx resampler";
P = OUTRATE;
Q = INRATE;
taps = 651;
hist_len = INHISTORY;
} else {
LOG(INFO) << "Initializing Rx resampler";
P = INRATE;
Q = OUTRATE;
taps = 961;
hist_len = OUTHISTORY;
}
if (!*lpf) {
cutoff_freq = (P < Q) ? (1.0/(float) Q) : (1.0/(float) P);
*lpf = createLPF(cutoff_freq, taps, P);
}
if (!*buf) {
*buf = new signalVector();
}
if (!*hist);
*hist = new signalVector(hist_len);
}
/* Resample a signal vector
*
* The input vector is deallocated and the pointer returned with a vector
* of any unconverted samples.
*/
signalVector *resmpl_sigvec(signalVector *hist, signalVector **vec,
signalVector *lpf, double in_rate,
double out_rate, int chunk_sz)
{
signalVector *resamp_vec;
int num_chunks = (*vec)->size() / chunk_sz;
/* Truncate to a chunk multiple */
signalVector trunc_vec(num_chunks * chunk_sz);
(*vec)->segmentCopyTo(trunc_vec, 0, num_chunks * chunk_sz);
/* Update sample buffer with remainder */
*vec = segment(*vec, trunc_vec.size(), (*vec)->size() - trunc_vec.size());
/* Add history and resample */
signalVector input_vec(*hist, trunc_vec);
resamp_vec = polyphaseResampleVector(input_vec, in_rate,
out_rate, lpf);
/* Update history */
trunc_vec.segmentCopyTo(*hist, trunc_vec.size() - hist->size(),
hist->size());
return resamp_vec;
}
/* Wrapper for receive-side integer-to-float array resampling */
int rx_resmpl_int_flt(float *smpls_out, short *smpls_in, int num_smpls)
{
int num_resmpld, num_chunks;
signalVector *convert_vec, *resamp_vec, *trunc_vec;
if (!rx_lpf || !rx_vec || !rx_hist)
init_resampler(&rx_lpf, &rx_vec, &rx_hist, false);
/* Convert and add samples to the receive buffer */
convert_vec = short_to_sigvec(smpls_in, num_smpls);
rx_vec = concat(rx_vec, convert_vec);
num_chunks = rx_vec->size() / OUTCHUNK;
if (num_chunks < 1)
return 0;
/* Resample */
resamp_vec = resmpl_sigvec(rx_hist, &rx_vec, rx_lpf,
INRATE, OUTRATE, OUTCHUNK);
/* Truncate */
trunc_vec = segment(resamp_vec, INHISTORY,
resamp_vec->size() - INHISTORY);
/* Convert */
num_resmpld = sigvec_to_float(trunc_vec, smpls_out);
return num_resmpld;
}
/* Wrapper for transmit-side float-to-int array resampling */
int tx_resmpl_flt_int(short *smpls_out, float *smpls_in, int num_smpls)
{
int num_resmpl, num_chunks;
signalVector *convert_vec, *resamp_vec;
if (!tx_lpf || !tx_vec || !tx_hist)
init_resampler(&tx_lpf, &tx_vec, &tx_hist, true);
/* Convert and add samples to the transmit buffer */
convert_vec = float_to_sigvec(smpls_in, num_smpls);
tx_vec = concat(tx_vec, convert_vec);
num_chunks = tx_vec->size() / INCHUNK;
if (num_chunks < 1)
return 0;
/* Resample and convert to an integer array */
resamp_vec = resmpl_sigvec(tx_hist, &tx_vec, tx_lpf,
OUTRATE, INRATE, INCHUNK);
num_resmpl = sigvec_to_short(resamp_vec, smpls_out);
return num_resmpl;
}
/* Receive a timestamped chunk from the device */
void RadioInterface::pullBuffer()
{
int num_cv, num_rd;
bool local_underrun;
/* Read samples. Fail if we don't get what we want. */
num_rd = mRadio->readSamples(rx_buf, OUTCHUNK, &overrun,
readTimestamp, &local_underrun);
LOG(DEBUG) << "Rx read " << num_rd << " samples from device";
assert(num_rd == OUTCHUNK);
underrun |= local_underrun;
readTimestamp += (TIMESTAMP) num_rd;
/* Convert and resample */
num_cv = rx_resmpl_int_flt(rcvBuffer + 2 * rcvCursor,
rx_buf, num_rd);
LOG(DEBUG) << "Rx read " << num_cv << " samples from resampler";
rcvCursor += num_cv;
}
/* Send a timestamped chunk to the device */
void RadioInterface::pushBuffer()
{
int num_cv, num_wr;
if (sendCursor < INCHUNK)
return;
LOG(DEBUG) << "Tx wrote " << sendCursor << " samples to resampler";
/* Resample and convert */
num_cv = tx_resmpl_flt_int(tx_buf, sendBuffer, sendCursor);
assert(num_cv > sendCursor);
/* Write samples. Fail if we don't get what we want. */
num_wr = mRadio->writeSamples(tx_buf + OUTHISTORY * 2,
num_cv - OUTHISTORY,
&underrun,
writeTimestamp);
LOG(DEBUG) << "Tx wrote " << num_wr << " samples to device";
assert(num_wr == num_wr);
writeTimestamp += (TIMESTAMP) num_wr;
sendCursor = 0;
}