mirror of
https://github.com/RangeNetworks/openbts.git
synced 2025-10-24 00:23:50 +00:00
577 lines
19 KiB
C++
577 lines
19 KiB
C++
/*
|
|
* Copyright 2014 Range Networks, Inc.
|
|
*
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
* This software is distributed under multiple licenses;
|
|
* see the COPYING file in the main directory for licensing
|
|
* information for this specific distribution.
|
|
*
|
|
* This use of this software may be subject to additional restrictions.
|
|
* See the LEGAL file in the main directory for details.
|
|
|
|
*/
|
|
|
|
#define LOG_GROUP LogGroup::GSM // Can set Log.Level.GSM for debugging
|
|
|
|
#include "GSMLogicalChannel.h"
|
|
#include "GSMCCCH.h"
|
|
#include "GSMRadioResource.h"
|
|
#include <ControlTransfer.h>
|
|
#include <L3TranEntry.h> // For NewTransactionTable.
|
|
#include <MAC.h>
|
|
#include <math.h>
|
|
|
|
using namespace Control;
|
|
using namespace GPRS;
|
|
|
|
namespace GSM {
|
|
|
|
|
|
static int sMaxAge; ///< Maximum allowed age of RACH in frames, a constant computed from config options.
|
|
|
|
|
|
CCCHLogicalChannel::CCCHLogicalChannel(unsigned wCcchGroup, const TDMAMapping& wMapping)
|
|
:mCcchGroup(wCcchGroup), mRunning(false)
|
|
{
|
|
unsigned TN = wCcchGroup * 2; // *2 to convert from CCCH_GROUP
|
|
this->mL1 = new CCCHL1FEC(wMapping,TN);
|
|
this->connect(this->mL1);
|
|
}
|
|
|
|
|
|
static void *CCCHLogicalChannelServiceLoopAdapter(CCCHLogicalChannel* chan)
|
|
{
|
|
chan->ccchServiceLoop();
|
|
return NULL;
|
|
}
|
|
|
|
void CCCHLogicalChannel::ccchOpen()
|
|
{
|
|
L2LogicalChannelBase::startl1();
|
|
if (!mRunning) {
|
|
mRunning=true;
|
|
mServiceThread.start((void*(*)(void*))CCCHLogicalChannelServiceLoopAdapter,this);
|
|
}
|
|
}
|
|
|
|
// This is a specialized thread-safe queue to be used only for the paging and related queues.
|
|
// The writer thread(s) can only write to the end of the queue.
|
|
// The single reader thread can do a protected iteration using a single captive iterator in the class.
|
|
// It does not support blocking wait so it is much simpler than InterthreadQueue.
|
|
template <class ETP> // Entry Type, which is a Pointer.
|
|
class IterableQueue {
|
|
typedef typename std::list<ETP>::iterator itr_t;
|
|
Mutex miqLock;
|
|
std::list<ETP> miqList;
|
|
typename std::list<ETP>::iterator miqIterator;
|
|
ETP iqResult() { return miqIterator == miqList.end() ? NULL : *miqIterator; }
|
|
|
|
public:
|
|
int *miqLoadPointer; // If the descendent class sets this, it will be maintained with the number of elements in the queue.
|
|
IterableQueue() : miqLoadPointer(NULL) {}
|
|
|
|
void push_back(ETP elt) {
|
|
ScopedLock lock(miqLock);
|
|
miqList.push_back(elt);
|
|
if (miqLoadPointer) (*miqLoadPointer)++;
|
|
}
|
|
//ETP pop_frontr() {
|
|
// ScopedLock lock(miqLock);
|
|
// if (miqList.empty()) { return 0; } // Hopefully 0 has some distinct meaning for type ET.
|
|
// ETP result = miqList.front();
|
|
// miqList.pop_front();
|
|
// if (miqLoadPointer) (*miqLoadPointer)++;
|
|
// return result;
|
|
//}
|
|
|
|
ETP itBegin() {
|
|
ScopedLock lock(miqLock);
|
|
miqIterator = miqList.begin();
|
|
return iqResult();
|
|
}
|
|
// It is the caller's responsibility to delete the element, or enqueue it elsewhere.
|
|
ETP itRemove(ETP thisone) { // The argument is redundant but helps check compliance with list semantics.
|
|
LOG(DEBUG);
|
|
ScopedLock lock(miqLock);
|
|
assert(*miqIterator == thisone);
|
|
miqIterator = miqList.erase(miqIterator);
|
|
if (miqLoadPointer) (*miqLoadPointer)--;
|
|
return iqResult();
|
|
}
|
|
ETP itSkip(ETP thisone) { // The argument is redundant but helps check compliance with list semantics.
|
|
ScopedLock lock(miqLock);
|
|
assert(*miqIterator == thisone);
|
|
miqIterator++;
|
|
return iqResult();
|
|
}
|
|
|
|
int getSize() {
|
|
ScopedLock lock(miqLock);
|
|
return miqList.size();
|
|
}
|
|
};
|
|
|
|
class PagingQ {
|
|
public:
|
|
InterthreadQueue<NewPagingEntry> mPageQ;
|
|
void addPage(NewPagingEntry *npe) { mPageQ.write(npe); }
|
|
unsigned getPagingLoad() { return mPageQ.size(); }
|
|
} gPagingQ;
|
|
|
|
// Global linkage:
|
|
int getPCHLoad() {
|
|
return gPagingQ.getPagingLoad();
|
|
}
|
|
|
|
|
|
// Welcome to wonderful C++.
|
|
struct RachCompareAdapter {
|
|
/** Compare the objects pointed to, not the pointers themselves. */
|
|
// (pat) This is used when a RachInfo is placed in a priority_queue.
|
|
// Return true if rach1 should appear before rach2 in the priority_queue,
|
|
// meaning that rach2 will be serviced before rach1, since the stupid C++ priority_queue pops from the END of the queue.
|
|
bool operator()(const RachInfo *rach1, const RachInfo *rach2) {
|
|
assert(!rach1->mChan == !rach2->mChan); // In any given queue, all raches have mChan, or none.
|
|
if (rach1->mChan) {
|
|
return rach1->mReadyTime > rach2->mReadyTime;
|
|
} else {
|
|
return rach1->mWhen > rach2->mWhen;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
// This queue holds RACHes of all types waiting to be serviced.
|
|
InterthreadQueue<RachInfo> gRachq;
|
|
|
|
|
|
// The result is 3-state (LCH, !LCH and deleteMe==true, !LCH && deleteMe==false.)
|
|
// If it is a TCH or SDCCH return an allocated channel, or NULL if not possible,
|
|
// in which case the handset may ultimately be sent an immediate assignment reject.
|
|
// On return, if deleteMe, the caller will delete the rach.
|
|
static L2LogicalChannel *preallocateChForRach(RachInfo *rach, bool *deleteMe)
|
|
{
|
|
*deleteMe = false;
|
|
|
|
Time now = gBTS.time();
|
|
int age = now - rach->mWhen; // The result is number of frames and could be negative.
|
|
if (age>sMaxAge) {
|
|
LOG(WARNING) << "ignoring RACH burst with age " << age;
|
|
*deleteMe = true;
|
|
return NULL;
|
|
}
|
|
|
|
L2LogicalChannel *LCH = NULL;
|
|
ChannelType chtype = decodeChannelNeeded(rach->mRA);
|
|
if (chtype == PSingleBlock1PhaseType || chtype == PSingleBlock2PhaseType) {
|
|
return NULL; // this routine does nothing for this.
|
|
} else if (chtype == TCHFType) {
|
|
LCH = gBTS.getTCH();
|
|
} else if (chtype == SDCCHType) {
|
|
LCH = gBTS.getSDCCH();
|
|
} else {
|
|
LOG(NOTICE) << "RACH burst for unsupported service RA=" << rach->mRA;
|
|
// (pat) 4-2014: Stop allocating channels for this. We get a lot of false RACHes so lets ignore those with unrecognized RA.
|
|
// LCH = gBTS.getSDCCH();
|
|
*deleteMe = true;
|
|
return NULL;
|
|
}
|
|
|
|
if (!LCH) {
|
|
LOG(DEBUG) << "No channels availablable, RACH discarded";
|
|
*deleteMe = true;
|
|
return NULL;
|
|
}
|
|
|
|
int initialTA = rach->initialTA();
|
|
assert(initialTA >= 0 && initialTA <= 62); // enforced by AccessGrantResponder.
|
|
LCH->l1InitPhy(rach->RSSI(),initialTA,gBTS.clock().systime(rach->mWhen.FN()));
|
|
LCH->lcstart();
|
|
rach->mChan = LCH;
|
|
Time sacchStart = LCH->getSACCH()->getNextWriteTime();
|
|
rach->mReadyTime = sacchStart;
|
|
// There is a race whether the thread that runs SACCH can run before sacchStart time, and if not
|
|
// the SACCH will not be transmitted at this time.
|
|
// Therefore, if sacchStart time is close, add a whole sacch frame, 104 frames == 480ms.
|
|
now = gBTS.time(); // Must update this because getTCH blocked.
|
|
int diff = rach->mReadyTime - now; // Returns number of 4.8ms frames. // positive diff is in the future.
|
|
if (diff < 26) { // very conservative.
|
|
// (pat) We are making SURE the SACCH has transmitted a frame before we tell the handset to use the channel.
|
|
// (pat) Not sure this is necessary.
|
|
rach->mReadyTime += 104;
|
|
}
|
|
if (rach->mReadyTime < now + 26) { // negative diff means sacchStart is still in the past.
|
|
// Should never happen.
|
|
rach->mReadyTime = now + 104;
|
|
}
|
|
LOG(DEBUG) "RACH "<<LOGVAR(sacchStart)<<LOGVAR(now)<<LOGVAR(diff)<<LOGVAR2("readyTime",rach->mReadyTime);
|
|
return LCH;
|
|
}
|
|
|
|
void enqueueRach(RachInfo *rip)
|
|
{
|
|
// TODO: Phones next to the base station will include the operator's.
|
|
// We should service them first, even if they are just LUR.
|
|
|
|
bool deleteMe = false;
|
|
preallocateChForRach(rip,&deleteMe);
|
|
if (deleteMe) {
|
|
delete rip;
|
|
return;
|
|
}
|
|
|
|
gRachq.write(rip);
|
|
}
|
|
|
|
// This queue holds ImmediateAssignments sent from GPRS waiting be serviced.
|
|
// I believe that now GPRS will send assignments on PACCH if it can, so all elements here
|
|
// are sent only after the handset has stopped monitoring PACCH and gone back to monitoring CCCH.
|
|
// DRX mode appears to be on a separate timer from PACCH monitoring, so the elements in this queue
|
|
// may be in DRX mode or not.
|
|
// If the MS is in not in DRX mode we can send on any CCCH-AGCH.
|
|
// After the DRX time period expires these messages can only be sent on a paging channel.
|
|
// They are in NewPagingEntry format so they can be moved to the paging queue trivially.
|
|
IterableQueue<NewPagingEntry*> gGprsCcchMessageQ;
|
|
|
|
// Global linkage:
|
|
int getAGCHLoad()
|
|
{
|
|
int result = 0;
|
|
result += gRachq.size();
|
|
return result + gGprsCcchMessageQ.getSize();
|
|
}
|
|
|
|
// This is called from the GPRS directory.
|
|
void pagerAddCcchMessageForGprs(NewPagingEntry *npe)
|
|
{
|
|
LOG(DEBUG) <<LOGVAR(npe);
|
|
gGprsCcchMessageQ.push_back(npe);
|
|
}
|
|
|
|
|
|
bool CCCHLogicalChannel::sendGprsCcchMessage(NewPagingEntry *gprsMsg, GSM::Time &frameTime)
|
|
{
|
|
if (! gprsPageCcchSetTime(gprsMsg->mGprsClient,gprsMsg->mImmAssign,frameTime.FN())) { return false; }
|
|
L2LogicalChannelBase::l2sendm(*(gprsMsg->mImmAssign),L3_UNIT_DATA);
|
|
return true;
|
|
}
|
|
|
|
|
|
int getAGCHPending() { return 0; }
|
|
|
|
|
|
// Return true if the CCCH frame was used.
|
|
bool CCCHLogicalChannel::processRaches()
|
|
{
|
|
while (RachInfo *rach = gRachq.readNoBlock())
|
|
{
|
|
Time now = gBTS.time();
|
|
int age = now - rach->mWhen; // The result is number of frames and could be negative.
|
|
if (age>sMaxAge) {
|
|
LOG(WARNING) << "ignoring RACH burst with age " << age;
|
|
if (rach->mChan) {
|
|
LOG(INFO) << "BTS congestion: unable to process RACH for pre-allocated channel within expiration time";
|
|
rach->mChan->l2sendp(L3_HARDRELEASE_REQUEST); // (pat) added 9-6-2013
|
|
}
|
|
delete rach;
|
|
continue; // Did not use the CCCH frame yet.
|
|
}
|
|
|
|
|
|
ChannelType chtype = decodeChannelNeeded(rach->mRA);
|
|
LOG(DEBUG) <<LOGVAR(*rach) <<LOGVAR(chtype) <<LOGVAR(mCcchGroup);
|
|
|
|
if (chtype == PSingleBlock1PhaseType || chtype == PSingleBlock2PhaseType) {
|
|
assert(rach->mChan == NULL);
|
|
if (0 == gConfig.getNum("GPRS.Enable")) {
|
|
// GPRS service request when the beacon advertises no beacon support.
|
|
// This was a spurious RACH message or a stupid handset. Ignore it.
|
|
assert(rach->mChan == NULL);
|
|
delete rach;
|
|
continue;
|
|
}
|
|
// Regardless of the type of GPRS request, we will send a single-block uplink,
|
|
// which the MS will (most likely) use to send us a PacketResourceRequest.
|
|
// First request a single-block reservation from GPRS. If GPRS resources are busy,
|
|
// this will return NULL and we will send reject the RACH.
|
|
L3ImmediateAssignment *iap = GPRS::makeSingleBlockImmediateAssign(rach, mCcchNextWriteTime.FN() + 4);
|
|
if (iap) {
|
|
L2LogicalChannelBase::l2sendm(*iap,L3_UNIT_DATA);
|
|
delete iap;
|
|
delete rach;
|
|
} else {
|
|
}
|
|
return true; // We processed this rach and used the CCCH, one way or another.
|
|
}
|
|
|
|
// L2LogicalChannel *LCH;
|
|
// if (chtype == TCHFType) {
|
|
// // FIXME: This blocks at L2LAPDm::sendIdle!
|
|
// LCH = gBTS.getTCH();
|
|
// } else if (chtype == SDCCHType) {
|
|
// // We may reserve some SDCCH for CC and SMS.
|
|
// if (requestingLUR(rach->mRA)) {
|
|
// int SDCCHAvailable = gBTS.SDCCHAvailable();
|
|
// int SDCCHReserve = gConfig.getNum("GSM.Channels.SDCCHReserve");
|
|
// if (requestingLUR(rach->mRA) && SDCCHAvailable <= SDCCHReserve) {
|
|
// // (pat 2-2014) Changed this message and downgraded from CRIT.
|
|
// LOG(CRIT) << "LUR [Location Update Request] congestion, insufficient "<<LOGVAR(SDCCHAvailable) << " <= " <<LOGVAR(SDCCHReserve);
|
|
// goto failure;
|
|
// }
|
|
// }
|
|
//
|
|
// LCH = gBTS.getSDCCH();
|
|
// } else {
|
|
// LOG(NOTICE) << "RACH burst for unsupported service RA=" << rach->mRA;
|
|
// LCH = gBTS.getSDCCH(); // Try anyway.
|
|
// }
|
|
//
|
|
//
|
|
// // Nothing available?
|
|
// if (!LCH) {
|
|
// failure:
|
|
#if 0
|
|
// return false;
|
|
#endif
|
|
// }
|
|
|
|
if (! rach->mChan) {
|
|
delete rach;
|
|
continue;
|
|
}
|
|
|
|
// Success. Send an ImmediateAssignment.
|
|
int initialTA = rach->initialTA();
|
|
assert(initialTA >= 0 && initialTA <= 62); // enforced by AccessGrantResponder.
|
|
//LCH->l1InitPhy(rach->RSSI(),initialTA,gBTS.clock().systime(rach->mWhen.FN()));
|
|
gReports.incr("OpenBTS.GSM.RR.RACH.TA.Accepted",(int)(initialTA));
|
|
L2LogicalChannel *LCH = rach->mChan;
|
|
|
|
// TODO: Update T3101.
|
|
|
|
L3ImmediateAssignment assign(
|
|
L3RequestReference(rach->mRA,rach->mWhen),
|
|
LCH->channelDescription(),
|
|
L3TimingAdvance(initialTA)
|
|
);
|
|
//assign.setStartFrame(rach->mReadyTime.FN() + 104);
|
|
|
|
if (0) { // This was for debugging. Adding this delay made the layer1 connection reliable.
|
|
// Delay the channel assignment until the SACCH is known to be transmitting...
|
|
Time sacchStart = LCH->getSACCH()->getNextWriteTime();
|
|
now = gBTS.time(); // Must update this because getTCH blocked.
|
|
int msecsDelay = ((sacchStart - now.FN()).FN() * gFrameMicroseconds) / 1000;
|
|
// Add an extra gratuitous 250ms delay for testing.
|
|
// msecsDelay += 250;
|
|
if (msecsDelay < 0) { msecsDelay = 0; }
|
|
if (msecsDelay) {
|
|
LCH->addT3101(msecsDelay);
|
|
//assign.setStartFrame(now.FN() + (1000 * msecsDelay) / gFrameMicroseconds);
|
|
usleep(msecsDelay * 1000);
|
|
}
|
|
LOG(INFO) << "sending L3ImmediateAssignment " << LCH->descriptiveString() <<LOGVAR(msecsDelay) <<" " <<assign;
|
|
}
|
|
|
|
L2LogicalChannelBase::l2sendm(assign,L3_UNIT_DATA);
|
|
delete rach;
|
|
return true; // We used this CCCH.
|
|
}
|
|
return false; // CCCH frame not used.
|
|
}
|
|
|
|
|
|
// Simplified version for public release
|
|
bool CCCHLogicalChannel::processPages()
|
|
{
|
|
while (NewPagingEntry *npe1 = gPagingQ.mPageQ.readNoBlock()) {
|
|
LOG(DEBUG)<<LOGVAR(npe1);
|
|
if (npe1->mGprsClient) { // Is it a GPRS page?
|
|
// Add 51 to the frame time because the message because the MS may be on the other 51-multiframe.
|
|
Time future(mCcchNextWriteTime + 52);
|
|
if (! sendGprsCcchMessage(npe1,future)) {
|
|
delete npe1; // In the incredibly unlikely event that the above failed, just give up.
|
|
continue;
|
|
}
|
|
} else {
|
|
const L3MobileIdentity& id1 = npe1->getMobileId();
|
|
ChannelType type1 = npe1->getGsmChanType();
|
|
L3PagingRequestType1 page1(id1,type1);
|
|
L2LogicalChannelBase::l2sendm(page1,L3_UNIT_DATA);
|
|
}
|
|
if (++npe1->mSendCount < 2) { // Send each page twice.
|
|
gPagingQ.mPageQ.write_front(npe1); // Put it back for resend in the next multiframe.
|
|
} else {
|
|
delete npe1;
|
|
}
|
|
return true;
|
|
}
|
|
return false; // CCCH unused.
|
|
}
|
|
|
|
|
|
|
|
// Return true if the current CCCH was used.
|
|
bool CCCHLogicalChannel::ccchServiceQueue()
|
|
{
|
|
// Update the time when the next CCCH frame will be sent.
|
|
// All the l2sendm/l2sendp calls below block using waitToSend()
|
|
// on the mPrevWriteTime set by the getNextWriteTime call.
|
|
mCcchNextWriteTime = getNextWriteTime();
|
|
if (gBTS.btsHold()) { return false; }
|
|
|
|
// Is this CCCH used for pages? We determine this by looking at the frame number within the 51-multiframe.
|
|
int paging_block_index = mRevPCH[mCcchNextWriteTime.FN() % 51];
|
|
|
|
|
|
if (paging_block_index >= 0 && processPages()) { return true; }
|
|
|
|
// We did not use this CCCH for a page, so lets look for something else to send.
|
|
if (processRaches()) {
|
|
return true; // We used this CCCH.
|
|
}
|
|
|
|
// GPRS messages may be in DRX mode or not.
|
|
// If they are in DRX mode, move them to a paging queue and set foundSomeNewPages.
|
|
bool foundSomeNewPages = false;
|
|
|
|
for (NewPagingEntry *gprsIt = gGprsCcchMessageQ.itBegin(); gprsIt; ) {
|
|
NewPagingEntry *gprsMsg = gprsIt; // This is redundant; the items are not currently modified by iteration.
|
|
LOG(DEBUG) << "processing"<<LOGVAR(gprsMsg);
|
|
GSM::Time drxBeginTime(gprsMsg->mDrxBegin);
|
|
if (mCcchNextWriteTime >= drxBeginTime) {
|
|
// This MS is now in DRX mode. Move the message to the paging queue.
|
|
gprsIt = gGprsCcchMessageQ.itRemove(gprsIt);
|
|
gPagingQ.addPage(gprsMsg);
|
|
foundSomeNewPages = true;
|
|
continue;
|
|
}
|
|
// Woo hoo! Send out the message.
|
|
if (sendGprsCcchMessage(gprsMsg,mCcchNextWriteTime)) {
|
|
gprsIt = gGprsCcchMessageQ.itRemove(gprsIt);
|
|
delete gprsMsg;
|
|
return true; // We used this CCCH.
|
|
} else {
|
|
// Failed. That means we were unable to make a reservation for some reason.
|
|
// While unlikely, it is possible that a reservation on one channel failed while reservations on other
|
|
// channels would succeed, so dont block the entire queue due to this one failure, keep going.
|
|
gprsIt = gGprsCcchMessageQ.itSkip(gprsIt);
|
|
}
|
|
}
|
|
|
|
if (foundSomeNewPages); // shut up gcc
|
|
|
|
return false; // We have not used this CCCH.
|
|
}
|
|
|
|
// pats TODO: Send the transceiver an idle frame rather than doing it here.
|
|
// There is one of these for each timeslot, ie, for ccch_group.
|
|
void CCCHLogicalChannel::ccchServiceLoop()
|
|
{
|
|
// build the idle frame
|
|
static const L3PagingRequestType1 filler;
|
|
static const L3Frame idleFrame(filler,L3_UNIT_DATA);
|
|
|
|
bool isCCCHCombined = gControlChannelDescription->isCCCHCombined();
|
|
// TODO: Send idle frame to transceiver.
|
|
|
|
// Calculate maximum number of frames of delay.
|
|
// See GSM 04.08 3.3.1.1.2 for the logic here.
|
|
static const unsigned txInteger = gConfig.getNum("GSM.RACH.TxInteger");
|
|
assert(txInteger <= 15);
|
|
// RACH slot definition: we see in GSM 5.02 clause 7 table 3 of 9 that a RACH can appear on timeslots 0,2,4, or 6, and in table 5 of 9 we
|
|
// see that for a non-combined CCCH-CONF any of the 51 frames can be used, and for combined CCCH-CONF the available (51*4=204 slots/51-multiframe)
|
|
// frames are: B4, B5, B14, B15 ... B36, B45, B46 (27*4=108 slots/51-multiframe.)
|
|
// GSM 4.08 11.1.1, And I quote: "The minimum value of this timer is equal to the time taken by T+2S slots of the mobile station's
|
|
// RACH. S and T are defined in sub-clause 3.3.1.2. The maximum value of this timer is 5 seconds."
|
|
static const int stval = GSM::RACHSpreadSlots[txInteger] + 2*(isCCCHCombined ? GSM::RACHWaitSParamCombined[txInteger] : GSM::RACHWaitSParam[txInteger]);
|
|
// Subtract some frames from the maxAge to make sure we still have time left to send it; the amount should be 4 frames
|
|
// plus some time for the MS to receive and decode it plus the slack induced by the OpenBTS tranceiver interface, which we do not know.
|
|
sMaxAge = min(stval, (int)(5 * 51 * 4.2)) - 6;
|
|
|
|
for (int i = 0; i < 51; i++) { mRevPCH[i] = -1; } // -1 means not used for paging.
|
|
|
|
mRevPCH[16] = 0;
|
|
|
|
int cnt = 0;
|
|
while (! gBTS.btsShutdown()) {
|
|
|
|
if (! ccchServiceQueue()) {
|
|
// Nothing to send on CCCH frame, so just send an idle frame.
|
|
//LOG(DEBUG)<<"sending page as idleframe";
|
|
l2sendf(idleFrame);
|
|
}
|
|
|
|
}
|
|
if (cnt); // shut up gcc.
|
|
}
|
|
|
|
static unsigned newPageAll()
|
|
{
|
|
LOG(DEBUG);
|
|
Control::NewPagingList_t pages;
|
|
Control::MMGetPages(pages,false);
|
|
|
|
LOG(INFO) << "paging " << pages.size() << " mobile(s)";
|
|
|
|
// Move the pages from the single incoming queue to the individual PCH paging queues.
|
|
for (Control::NewPagingList_t::iterator lp = pages.begin(); lp != pages.end(); lp++) {
|
|
gPagingQ.addPage(new NewPagingEntry(*lp));
|
|
}
|
|
return pages.size();
|
|
}
|
|
|
|
|
|
size_t NewPager::pagingEntryListSize()
|
|
{
|
|
Control::NewPagingList_t pages;
|
|
MMGetPages(pages,false);
|
|
return pages.size();
|
|
}
|
|
|
|
void NewPager::serviceLoop()
|
|
{
|
|
Timeval nextTime;
|
|
while (! gBTS.btsShutdown()) {
|
|
// Wait for pending activity to clear PCH.
|
|
if (unsigned load = gPagingQ.getPagingLoad()) {
|
|
LOG(DEBUG) << "Pager waiting with load " << load;
|
|
sleepFrames(51); // There could be multiple paging channels, in which case this is longer than necessary, but no matter.
|
|
continue;
|
|
}
|
|
// nextTime controls how quickly we resend pages.
|
|
if (! nextTime.passed()) {
|
|
sleepFrames(51);
|
|
continue;
|
|
}
|
|
newPageAll();
|
|
nextTime.future(5000); // Wait 5 seconds between paging sets.
|
|
}
|
|
}
|
|
|
|
|
|
void* NewPager::PagerServiceLoopAdapter(NewPager *pager)
|
|
{
|
|
pager->serviceLoop();
|
|
return NULL;
|
|
}
|
|
|
|
void NewPager::start()
|
|
{
|
|
if (mRunning) return;
|
|
mRunning=true;
|
|
mPagingThread.start((void* (*)(void*))PagerServiceLoopAdapter, (void*)this);
|
|
}
|
|
|
|
NewPager gPager;
|
|
|
|
void PagerStart()
|
|
{
|
|
gPager.start();
|
|
}
|
|
|
|
}; // namespace GSM
|