Files
openbts/GSM/GSMTransfer.h
Michael Iedema e9bac710e3 - SAP 0 now prioritized over SAP 3
- Handle Unsolicited DM response to SABM message
- ContentionResolution only applicable to SAP 0
2015-12-18 20:30:55 +01:00

871 lines
29 KiB
C++

/*
* Copyright 2008, 2014 Free Software Foundation, Inc.
* Copyright 2014 Range Networks, Inc.
*
* This software is distributed under multiple licenses; see the COPYING file in the main directory for licensing information for this specific distribution.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef GSMTRANSFER_H
#define GSMTRANSFER_H
#include "Defines.h"
#include "Interthread.h"
#include "BitVector.h"
#include "ByteVector.h"
#include "L3Enums.h"
#include "GSMCommon.h"
#include "GSM503Tables.h"
#include "SIPRtp.h" // For AudioFrame
/* Data transfer objects for the GSM core. */
namespace GSM {
// Forward references.
class TxBurst;
class RxBurst;
class L3Message;
class L2LogicalChannel; // Used as transparent pointer in Control directory.
class SACCHLogicalChannel;
/**@name Positions of stealing bits within a normal burst, GSM 05.03 3.1.4. */
//@{
static const unsigned gHlIndex = 60; ///< index of first stealing bit, GSM 05.03 3.1.4
static const unsigned gHuIndex = 87; ///< index of second stealing bit, GSM 05.03 3.1.4
//@}
static const unsigned gSlotLen = 148; ///< number of symbols per slot, not counting guard periods
/**
Interlayer primitives, GSM 04.04 4, GSM 04.06 4, GSM 04.07 10.
PH, DL, MDL, etc. is implied by context.
- L1-L2: PH
- L2-L3: DL, MDL
We don't provide the full req-conf-ind-ack handshake because we
don't always need it in such a tighly integrated system, so
our primitive set is simple.
*/
enum Primitive {
// Skip value 0 so uninitialized does not mean something.
L2_DATA = 1, ///< data at L1<->L2 interface is just data.
L3_DATA, ///< L2<->L3 acknowledged mode (multiframe) data.
L3_DATA_CONFIRM, ///< sent Lapdm->L2 on successfull acknowledged mode delivery, but currently discarded en route.
L3_UNIT_DATA, ///< L2<->L3 unacknowledged mode datagram-type data.
L3_ESTABLISH_REQUEST, // Sent from L3 to L2 and forwarded to LAPDm, only on SAP3 for SMS,
// since handset always establishes SAPBM mode on host chan SAP0, and we dont use SACCH SAP0.
L3_ESTABLISH_INDICATION, // Sent from LAPDm to L3 when SABM established as a result of request from handset.
L3_ESTABLISH_CONFIRM, // Sent from LAPDm to L3 on completion of L3_ESTABLISH_REQUEST.
// Note that SAP3 may be established by handset or L3, so Layer3 must always check for
// both L3_ESTABLISH_CONFIRM and L3_ESTABLISH_INDICATION in every place it checks
// to handle the case where SABM was sent by BTS and handset simultaneously, so we dont bother.
L3_RELEASE_REQUEST, // Sent from L3 to L2 and forwarded to LAPDm for normal release;
// if on SAP0, deactivate SACCH and start a release of everything.
L3_RELEASE_CONFIRM, // Sent from LAPDm when link release is confirmed, but currently discarded en route because no one cares.
L3_HARDRELEASE_REQUEST, // Sent from L3 to L2 when in cases where we know with certainty that the channel is unused,
// which are: channel change, after handover, or if channel must be returned
// to the free channel pool before being used.
// Message forwarded to LAPDm to tell it to immediately to idle mode without sending anything.
// Called MDL-RELEASE in 3GPP docs, example 4.06 4.1.1.9, and also "local end release" in LAPDm.
// Note that on ARFCN C0 any release implies to start sending dummy bursts (not LAPDm idle frames.)
MDL_ERROR_INDICATION, // Sent from LAPDm to layer2/3 on loss of contact. This is somewhat redundant with detection
// of loss of radio loss in layer1; it might be also used if there are bugs in LAPDm or the phone.
L3_RELEASE_INDICATION, // Sent from LAPDm to layer2/3 on normal release.
// ?? sent from L2 to L3 to indicate channel was released, possibly by loss of contact.
PH_CONNECT, // sent from L1 to LAPDm via L2 when first good burst is detected on a channel. Formerly used ESTABLISH.
HANDOVER_ACCESS, // Sent from L1 to L3 when handover access burst is detected.
// Note: Internal to layer2:
// Radio loss detection: handle like layer3 RELEASE.
/* 6-2014: (pat) OLD PRIMITIVES, keep around until new code works, then trash.
* // (pat) The ESTABLISH primitive is used on both the L1<->L2 and L2<->L3 interfaces, only on XCCH channels,
* // which are SDCCH, TCHFACCH and SACCH; all use L2LAPDm and XCCHEncoder/XCCHDecoder.
* // The use of ESTABLISH on these two layer interfaces is not coupled, and the ESTABLISH primitive does not directly penetrate through L2LAPDm.
* // We could use different primitive names for these two purposes (as per above comment).
* // On L1->L2LAPDm the ESTABLISH is sent on the first good frame, and does nothing but (possibly redundant?) re-init of L2LAPDm variables.
* // On L2->L1 there is code in L1 to open the channel when an ESTABLISH primitive is seen, but I dont believe this code is used.
* // So ESTABLISH is only important for L2LAPDm<->L3, where the ESTABLISH primitive starts SABM [reliable transport mode].
* // On SAP0 the MS always establishes SABM so in uplink the layer3 DCCHDispatch sits around and waits for it.
* // On downlink, only for MT-SMS, the BTS must initiate SABM, which it does by sending an ESTABLISH to the high side of L2LAPDm.
* ESTABLISH, ///< L2<->L3 SABM establishment, or L1->L2 notification of first good frame.
* // (pat) The RELEASE primitive is sent on L2<->L3 both ways. On SAPI=0 the RELEASE primitive is only sent
* // when the channel is released or lost.
* RELEASE, ///< normal channel release
* RELEASE_CONFIRM, ///< message from LAPDm to L2LogicalChannel indicating RELEASE confirmation, which allows using release timer T3111.
* // (pat) This is not a good idea, to have globals named "DATA" and "ERROR"; risks collisions with libraries.
* DATA, ///< multiframe data transfer
* UNIT_DATA, ///< datagram-type data transfer
* ERROR, ///< channel error above L1
* L1LOST, ///< (pat added) communication with handset lost at L1 level.
* // (pat) In GSM 4.06 (LAPDm) the HARDRELEASE corresponds to LAPDm MDL-RELEASE (defined in 4.1.1.10 described in 5.4.4.4)
* // RELEASE corresponds to LAPDm DL-RELEASE (defined in 4.1.1.2 described in 5.4.4.2)
* HARDRELEASE, ///< forced release after an assignment
* HANDOVER_ACCESS ///< received inbound handover access burst
*/
};
std::ostream& operator<<(std::ostream& os, Primitive prim);
// At layer3 there is a single L3LogicalChannel connection to the handset, and we no longer distinguish between
// SACCHLogicalChannel or L2LogicalChannel, we just view it as 3 different SAPs, which are:
#define SAPChannelFlag 4 // If set, means SACCH instead of host channel.
enum SAPI_t {
SAPI0 = 0,
SAPI3 = 3,
SAPI0Sacch = (SAPChannelFlag|0),
SAPI3Sacch = (SAPChannelFlag|3),
SAPIUndefined = 16 // We cant use 0, and cant be negative, but any other value is fine.
};
#define SAPIsSacch(sap) (!!((sap)&SAPChannelFlag))
#define SAP2SAPI(sap) ((sap)&(SAPChannelFlag-1))
const char *SAPI2Text(SAPI_t sapi);
std::ostream& operator<<(std::ostream& os, SAPI_t sapi);
/**
Class to represent one timeslot of channel bits with hard encoding.
*/
class TxBurst : public BitVector {
private:
Time mTime; ///< GSM frame number
public:
/** Create an empty TxBurst. */
TxBurst(const Time& wTime = Time(0))
:BitVector(gSlotLen),mTime(wTime)
{
// Zero out the tail bits now.
mStart[0]=0; mStart[1]=0; mStart[2]=0;
mStart[145]=0; mStart[146]=0; mStart[147]=0;
}
/** Create a TxBurst by copying from an existing BitVector. */
TxBurst(const BitVector& wSig, const Time& wTime = Time(0))
:BitVector(wSig),mTime(wTime)
{ assert(wSig.size()==gSlotLen); }
/** Create a TxBurst from an RxBurst (for testing). */
TxBurst(const RxBurst& rx);
/**@name Basic accessors. */
//@{
// Since mTime is volatile, we can't return a reference.
Time time() const { return mTime; }
void time(const Time& wTime) { mTime = wTime; }
//@}
bool operator>(const TxBurst& other) const
{ return mTime > other.mTime; }
/** Set upper stealing bit. */
void Hu(bool HuVal) { mData[gHuIndex] = HuVal; }
/** Set lower stealing bit. */
void Hl(bool HlVal) { mData[gHlIndex] = HlVal; }
friend std::ostream& operator<<(std::ostream& os, const TxBurst& ts);
};
std::ostream& operator<<(std::ostream& os, const TxBurst& ts);
typedef InterthreadQueue<TxBurst> TxBurstFIFO;
/** The InterthreadPriorityQueue accepts Timeslots and sorts them by Timestamp. */
class TxBurstQueue : public InterthreadPriorityQueue<TxBurst> {
public:
/** Get the framenumber of the next outgoing burst. Blocks if queue is empty. */
Time nextTime() const;
};
/**
Class to represent one timeslot of channel bits with soft encoding.
// (pat) A "normal burst" looks like this:
3 tail bits
57 upper data bits
1 upper stealing flag
26 training sequence
1 lower stealing flag
57 lower data bits
3 tail bits
8.25 guard bits.
*/
class RxBurst : public SoftVector {
private:
Time mTime; ///< timeslot and frame on which this was received
float mTimingError; ///< Timing error in symbol steps, <0 means early.
float mRSSI; ///< RSSI estimate associated with the slot, dB wrt full scale.
public:
/** Initialize an RxBurst from a hard Timeslot. Note the funny cast. */
RxBurst(const TxBurst& source, float wTimingError=0, int wRSSI=0);
/** Wrap an RxBurst around an existing float array. */
RxBurst(float* wData, const Time &wTime, float wTimingError, int wRSSI)
:SoftVector(wData,gSlotLen),mTime(wTime),
mTimingError(wTimingError),mRSSI(wRSSI)
{ }
// Since mTime is volatile, we can't return a reference.
Time time() const { return mTime; }
void time(const Time& wTime) { mTime = wTime; }
float RSSI() const { return mRSSI; }
float timingError() const { return mTimingError; }
/** Return a SoftVector alias to the first data field. */
// (pat) Actually, these are probably returning clones, not aliases, due to the conversion from Vector via copy-constructor.
const SoftVector data1() const { return segment(3, 57); }
/** Return a SoftVector alias to the second data field. */
const SoftVector data2() const { return segment(88, 57); }
float getNormalSNR() const;
/** Return upper stealing bit. */
bool Hu() const { return bit(gHuIndex); }
/** Return lower stealing bit. */
bool Hl() const { return bit(gHlIndex); }
/** Mark even bits as unkmnown. */
void clearEven();
/** Mark odd bits as unknown. */
void clearOdd();
friend std::ostream& operator<<(std::ostream& os, const RxBurst& ts);
};
std::ostream& operator<<(std::ostream& os, const RxBurst& ts);
typedef InterthreadQueue<RxBurst> RxBurstFIFO;
class L2Frame;
class L3Frame;
/** L2 Address as per GSM 04.06 3.2 */
class L2Address {
private:
unsigned mSAPI; ///< service access point indicator
unsigned mCR; ///< command/response flag
unsigned mLPD; ///< link protocol discriminator
public:
L2Address(unsigned wCR=0, unsigned wSAPI=0, unsigned wLPD=0)
:mSAPI(wSAPI),mCR(wCR),mLPD(wLPD)
{
assert(wSAPI<4);
}
/**@name Obvious accessors. */
//@{
unsigned SAPI() const { return mSAPI; }
#ifdef CR
#undef CR // This is defined in the sip or ortp include files somewhere.
#endif
unsigned CR() const { return mCR; }
unsigned LPD() const { return mLPD; }
//@}
/** Write attributes to an L2 frame. */
void write(L2Frame& target, size_t& writeIndex) const;
};
std::ostream& operator<<(std::ostream& os, const L2Address& address);
/** The L2 header control field, as per GSM 04.06 3.4 */
class L2Control {
public:
/** Control field format types, GSM 04.06 3.4. */
enum ControlFormat { IFormat, SFormat, UFormat };
/** LAPDm frame types, GSM 04.06 3.8.1. */
enum FrameType {
UIFrame,
SABMFrame,
UAFrame,
DMFrame,
DISCFrame,
RRFrame,
RNRFrame,
REJFrame,
IFrame,
BogusFrame ///< a return code used when parsing fails
};
private:
ControlFormat mFormat; ///< control field format
unsigned mNR; ///< receive sequence number
unsigned mNS; ///< transmit sequence number
unsigned mPF; ///< poll/final bit
unsigned mSBits; ///< supervisory bits
unsigned mUBits; ///< unnumbered function bits
public:
/** Initialize a U or S frame. */
L2Control(ControlFormat wFormat=UFormat, unsigned wPF=0, unsigned bits=0)
:mFormat(wFormat),mNR(0),mNS(0),mPF(wPF),mSBits(bits),mUBits(bits)
{
assert(mFormat!=IFormat);
assert(mPF<2);
if (mFormat==UFormat) assert(mUBits<0x20);
if (mFormat==SFormat) assert(mSBits<0x04);
}
/** Initialize an I frame. */
L2Control(unsigned wNR, unsigned wNS, unsigned wPF)
:mFormat(IFormat),mNR(wNR),mNS(wNS),mPF(wPF)
{
assert(mNR<8);
assert(mNS<8);
assert(mPF<2);
}
/**@name Obvious accessors. */
//@{
ControlFormat format() const { return mFormat; }
unsigned NR() const { assert(mFormat!=UFormat); return mNR; }
void NR(unsigned wNR) { assert(mFormat!=UFormat); mNR=wNR; }
unsigned NS() const { assert(mFormat==IFormat); return mNS; }
void NS(unsigned wNS) { assert(mFormat==IFormat); mNS=wNS; }
unsigned PF() const { assert(mFormat!=IFormat); return mPF; }
unsigned P() const { assert(mFormat==IFormat); return mPF; }
unsigned SBits() const { assert(mFormat==SFormat); return mSBits; }
unsigned UBits() const { assert(mFormat==UFormat); return mUBits; }
//@}
void write(L2Frame& target, size_t& writeIndex) const;
/** decode frame type */
FrameType decodeFrameType() const;
};
std::ostream& operator<<(std::ostream& os, L2Control::ControlFormat fmt);
std::ostream& operator<<(std::ostream& os, L2Control::FrameType cmd);
std::ostream& operator<<(std::ostream& os, const L2Control& control);
/** L2 frame length field, GSM 04.06 3.6 */
class L2Length {
private:
unsigned mL; ///< payload length in the frame
unsigned mM; ///< more data flag ("1" indicates segmentation)
public:
L2Length(unsigned wL=0, bool wM=0)
:mL(wL),mM(wM)
{ }
/**@name Obvious accessors. */
//@{
unsigned L() const { return mL; }
void L(unsigned wL) { mL=wL; }
unsigned M() const { return mM; }
void M(unsigned wM) { mM=wM; }
//@}
void write(L2Frame& target, size_t &writeIndex) const;
};
std::ostream& operator<<(std::ostream&, const L2Length&);
/** The total L2 header, as per GSM 04.06 3 */
class L2Header {
public:
/** LAPDm frame format types, GSM 04.06 2.1 */
enum FrameFormat {
FmtA, ///< full header (just use B instead)
FmtB, ///< full header
FmtBbis, ///< no header (actually, a pseudolength header)
FmtBter, ///< "short header" (which we don't use)
FmtB4, ///< addesss and control only, implied length
FmtC, ///< RACH (which we don't use)
};
private:
FrameFormat mFormat; ///< format to use in the L2 frame
L2Address mAddress; ///< GSM 04.06 2.3
L2Control mControl; ///< GSM 04.06 2.4
L2Length mLength; ///< GSM 04.06 2.5
public:
/** Parse the header from an L2Frame, assuming DCCH uplink. */
L2Header(FrameFormat wFormat, const L2Frame& source);
/** Format A or B. */
L2Header(const L2Address& wAddress, const L2Control& wControl, const L2Length& wLength,
FrameFormat wFormat=FmtB)
:mFormat(wFormat),
mAddress(wAddress), mControl(wControl), mLength(wLength)
{ }
/** Format B4. */
L2Header(const L2Address& wAddress, const L2Control& wControl)
:mFormat(FmtB4),
mAddress(wAddress), mControl(wControl)
{ }
/** Pseudolength case, used on non-dedicated control channels. */
L2Header(const L2Length& wLength)
:mFormat(FmtBbis),
mLength(wLength)
{ }
/**
Write the header into an L2Frame at a given offset.
@param frame The frame to write to.
@return number of bits written.
*/
size_t write(L2Frame& target) const;
/** Determine the header's LAPDm operation. */
L2Control::FrameType decodeFrameType() const { return mControl.decodeFrameType(); }
/**@name Obvious accessors. */
//@{
FrameFormat format() const { return mFormat; }
void format(FrameFormat wFormat) { mFormat=wFormat; }
const L2Address& address() const { return mAddress; }
L2Address& address() { return mAddress; }
void address(const L2Address& wAddress) { mAddress=wAddress; }
const L2Control& control() const { return mControl; }
L2Control& control() { return mControl; }
void control(const L2Control& wControl) { mControl=wControl; }
const L2Length& length() const { return mLength; }
L2Length& length() { return mLength; }
void length(const L2Length& wLength) { mLength=wLength; }
//@}
/** Return the number of bits needed to encode the header. */
size_t bitsNeeded() const;
};
std::ostream& operator<<(std::ostream& os, const L2Header& header);
std::ostream& operator<<(std::ostream& os, const L2Header::FrameFormat val);
/** N201, the maximum payload size of an L2 frame in bytes, GSM 04.06 5.8.3. */
unsigned N201(ChannelType, L2Header::FrameFormat);
/**
The bits of an L2Frame
Bit ordering is MSB-first in each octet.
*/
#define NEWL2MESSAGE 0
class L2Frame : public BitVector {
private:
#if NEWL2MESSAGE
#else
GSM::Primitive mPrimitive;
//RRCause mCause; // (pat) Added 5-2014.
#endif
public:
void randomizeFiller(unsigned start);
void randomizeFiller(const L2Header& header);
/** Fill the frame with the GSM idle pattern, GSM 04.06 2.2. */
void idleFill();
/** Build an empty frame with a given primitive. */
#if NEWL2MESSAGE
explicit L2Frame() : BitVector(23*8)
#else
// (pat) The default value is never used explicitly, but this is the default constructor for an unspecified L2Frame constructor in descendent classes.
//explicit L2Frame(GSM::Primitive wPrimitive=UNIT_DATA) : BitVector(23*8), mPrimitive(wPrimitive)
explicit L2Frame(GSM::Primitive wPrimitive=L2_DATA) : BitVector(23*8), mPrimitive(wPrimitive)
//,mCause(L3RRCause::NormalEvent)
#endif
{ idleFill(); }
/**
Make an L2Frame from a block of bits.
BitVector must fit in the L2Frame.
*/
explicit L2Frame(const BitVector&);
/**
Make an L2Frame from a payload using a given header.
The L3Frame must fit in the L2Frame.
The primitive is DATA.
*/
explicit L2Frame(const L2Header&, const BitVector&, bool noran=false);
/**
Make an L2Frame from a header with no payload.
The primitive is DATA.
*/
explicit L2Frame(const L2Header&);
/** Get the LPD from the L2 header. Assumes address byte is first. */
unsigned LPD() const;
/**
Look into the LAPDm header and get the SAPI, see GSM 04.06 2 and 3.2.
This method assumes frame format A or B, GSM 04.06 2.1.
*/
unsigned SAPI() const;
/**@name Decoding methods that assume A/B header format. */
//@{
/** Look into the LAPDm header and get the control format. */
L2Control::ControlFormat controlFormat() const;
/** Look into the LAPDm header and decode the U-frame type. */
L2Control::FrameType UFrameType() const;
/** Look into the LAPDm header and decode the S-frame type. */
L2Control::FrameType SFrameType() const;
/** Look into the LAPDm header and get the P/F bit. */
bool PF() const { return mStart[8+3] & 0x01; }
/** Set/clear the PF bit. */
void PF(bool wPF) { mStart[8+3]=wPF; }
/**
Look into the header and get the length of the payload.
Assumes A or B header, or B4 header with L2 pseudo length in L3.
*/
unsigned L() const { return peekField(8*2,6); }
/** Get the "more data" bit (M). */
bool M() const { return mStart[8*2+6] & 0x01; }
/** Return the L3 payload part. Assumes A or B header format. */
BitVector L3Part() const { return cloneSegment(8*3,8*L()); }
/** Return NR sequence number, GSM 04.06 3.5.2.4. Assumes A or B header. */
unsigned NR() const { return peekField(8*1+0,3); }
/** Return NS sequence number, GSM 04.06 3.5.2.5. Assumes A or B header. */
unsigned NS() const { return peekField(8*1+4,3); }
/** Return the CR bit, GSM 04.06 3.3.2. Assumes A or B header. */
bool CR() const { return mStart[6] & 0x01; }
/** Set/clear the CR bit. */
void CR(bool wCR) { mStart[6]=wCR; }
/** Return truw if this a DCCH idle frame. */
bool DCCHIdle() const
{
return peekField(0,32)==0x0103012B;
}
//@}
#if NEWL2MESSAGE
#else
Primitive primitive() const { return mPrimitive; }
/** This is used only for testing. */
void primitive(Primitive wPrimitive) { mPrimitive=wPrimitive; }
#endif
};
#if NEWL2MESSAGE
class L2Message {
GSM::Primitive mPrimitive;
RRCause mCause; // (pat) Added 5-2014.
L2Frame mL2Frame;
public:
explicit L2Message(GSM::Primitive wPrimitive=L2_DATA) : mPrimitive(wPrimitive), mCause(L3RRCause::NormalEvent) {}
Primitive primitive() const { return mPrimitive; }
/** This is used only for testing. */
void primitive(Primitive wPrimitive) { mPrimitive=wPrimitive; }
};
#else
typedef L2Frame L2Message;
#endif
/** Return a reference to the standard LAPDm downlink idle frame. */
const L2Frame& L2IdleFrame();
std::ostream& operator<<(std::ostream& os, const L2Frame& msg);
std::ostream& operator<<(std::ostream& os, const L2Frame* msg);
typedef InterthreadQueueWithWait<L2Frame> L2FrameFIFO;
/**
Representation of a GSM L3 message in a bit vector.
Bit ordering is MSB-first in each octet.
NOTE: This is for the GSM message bits, not the message content. See L3Message.
*/
class L3Frame : public BitVector { // (pat) This is in Layer3, common to UMTS and GSM and someday should move to some other directory.
private:
Primitive mPrimitive;
SAPI_t mSapi; // (pat) 5-2013: added SAPI this frame was received on or sent to.
// Not relevant for non-DATA L3Frame, for example, frames sent on CCCH.
// In other words, only relevant if primitive is DATA.
// This is only used in one place in Layer3, but it is interesting debugging information always.
friend class SACCHLogicalChannel; // So it can modify mSapi.
size_t mL2Length; ///< length, or L2 pseudo-length, as appropriate
// (pat) FIXME: Apparently l2length is sometimes in bits and sometimes in bytes? (Just look at the constructors.)
double mTimestamp; // When created.
void f3init();
public:
explicit L3Frame(const L3Frame &other) : BitVector(other), mPrimitive(other.mPrimitive), mSapi(other.mSapi), mL2Length(other.mL2Length) { f3init(); }
// Dont do this. A Primitive can be converted to a size_t, so it creates ambiguities in pre-existing code.
//explicit L3Frame(size_t bitsNeeded) :BitVector(bitsNeeded),mPrimitive(DATA),mSapi(SAPI0),mL2Length(bitsNeeded/8) { f3init(); }
explicit L3Frame(Primitive wPrimitive) :BitVector((size_t)0),mPrimitive(wPrimitive),mSapi(SAPI0),mL2Length(0) { f3init(); }
explicit L3Frame(SAPI_t wSapi, Primitive wPrimitive) :BitVector((size_t)0),mPrimitive(wPrimitive),mSapi(wSapi),mL2Length(0) { f3init(); }
explicit L3Frame(Primitive wPrimitive, size_t len, SAPI_t wSapi=SAPI0)
:BitVector(len),mPrimitive(wPrimitive),mSapi(wSapi),mL2Length(len)
{ f3init(); }
/** Put raw bits into the frame. */
// (pat 11-2013) The old BitVector automatically cloned because the BitVector is declared const; now we must be explicit.
explicit L3Frame(SAPI_t wSapi,const BitVector& source, Primitive wPrimitive=L3_DATA)
:mPrimitive(wPrimitive),mSapi(wSapi),mL2Length(source.size()/8)
{ f3init(); clone(source); if (source.size()%8) mL2Length++; }
/** Concatenate 2 L3Frames */
// (pat) This was previously used only to concatenate BitVectors. With lots of unneeded conversions. Oops. So I removed it.
//L3Frame(const L3Frame& f1, const L3Frame& f2)
// :BitVector(f1,f2),mPrimitive(L3_DATA),mSapi(SAPI0),
// mL2Length(f1.mL2Length + f2.mL2Length)
//{ }
// (pat) This is used only in L2LAPDm::bufferIFrameData to avoid one extra copy in the final concat.
// TODO: Make a better assembly buffer there, then get rid of this constructor.
explicit L3Frame(SAPI_t wSapi, const BitVector& f1, const BitVector& f2) // (pat) added to replace above.
:BitVector(f1,f2),mPrimitive(L3_DATA),mSapi(wSapi),
mL2Length((f1.size() + f2.size())/8)
{ f3init(); }
/** Build from an L2Frame. */
// (pat 11-2013) The old BitVector automatically cloned because the BitVector is declared const; now we must be explicit.
explicit L3Frame(SAPI_t wSapi, const L2Frame& source)
:mPrimitive(L3_DATA), mSapi(wSapi),mL2Length(source.L())
{ f3init(); clone(source.L3Part()); }
/** Serialize a message into the frame. */
// (pat) Note: This previously caused unanticipated auto-conversion from L3Message to L3Frame throughout the code base.
explicit L3Frame(const L3Message& msg, Primitive wPrimitive=L3_DATA, SAPI_t sapi=SAPI0);
/** Get a frame from a hex string. */
explicit L3Frame(SAPI_t sapi, const char*);
/** Get a frame from raw binary. */
// pat removed 9-8-2014 because it is unused. If you put it back in, add an explicit SAPI argument to make sure it is distguished
// from the other constructors.
//explicit L3Frame(const char*, size_t len);
/** Protocol Discriminator, GSM 04.08 10.2. */
L3PD PD() const { return (L3PD)peekField(4,4); }
/** Message Type Indicator, GSM 04.08 10.4. */
// Note: must AND with 0xbf for MM and CC messages. (And it doesnt hurt the other PDs either.)
unsigned MTI() const;
/** TI (transaction Identifier) value, GSM 04.07 11.2.3.1.3. */
// (pat) Only valid for certain types of messages, notably call control and SMS.
unsigned TI() const { return peekField(0,4); }
/** Return the associated primitive. */
GSM::Primitive primitive() const { return mPrimitive; }
bool isData() const { return mPrimitive == L3_DATA || mPrimitive == L3_UNIT_DATA; }
/** Return frame length in BYTES. */
size_t length() const { return size()/8; }
/** Length, or L2 pseudolength, as appropriate */
size_t L2Length() const { return mL2Length; }
void L2Length(size_t wL2Length) { mL2Length=wL2Length; }
// Methods for writing H/L bits into rest octets.
void writeH(size_t& wp);
void writeL(size_t& wp);
SAPI_t getSAPI() const { return mSapi; }
void text(std::ostream&os) const;
// (pat) This is used by PointerCompare when an L3Frame is placed in an InterthreadPriorityQueue.
bool operator>(const L3Frame&other) const {
// SAP 0 messages have priority over SAP 3.
if ((int)this->mSapi < (int) other.mSapi) { return false; } // SAP 0 trumps SAP 3.
if ((int)this->mSapi > (int) other.mSapi) { return true; } // SAP 3 is not as good as SAP 0.
return this->mTimestamp > other.mTimestamp; // Otherwise just order by time of creation.
}
};
std::ostream& operator<<(std::ostream& os, const L3Frame&);
std::ostream& operator<<(std::ostream& os, const L3Frame*);
typedef InterthreadQueue<L3Frame> L3FrameFIFO;
// Audio frames are bytes communicated between the RTP-layer [Real-time Transport Protocol] and the L1-layer FECs.
// The RTP frames come/go upstream directly on internet ports for communication with another BTS or elsewhere.
// The Audio frame is encoded inside an RTP frame transferred on the wire, but cracked out by the RTP layer,
// so we see only the Audio frame. The Audio format is communicated via SIP using SDP [Session Description Protocol]
// which is the "m=" and etc fields in the SIP invide.
// The simplest RTP/AVP audio payload type overview is wikipedia "RTP audio video profile".
// Formerly Audio Frames were fixed at 33 bytes for GSM Audio format, but now the size is variable,
// and when we support silence the AudioFrame size will vary with each frame.
typedef InterthreadQueue<SIP::AudioFrame> AudioFrameFIFO;
/**
(pat) This is the old comment for the GSM Vocoder frame, which has been replaced by AudioFrameRtp.
A vocoder frame for use in GSM/SIP contexts.
This is based on RFC-3551 Section 4.5.8.1.
Note the 4-bit pad at the start of the frame, filled with b1101 (0xd).
(pat) We are creating an RTP stream frame.
RFC-3551 specifies a 4 bit signature consisting of a one bit marker bit (which cant really mark much, can it)
followed by the payload type, which is RTP stream type 3, which is GSM Full Rate Audio 13kbit/s,
ie, 0xd followed by 260 bits of payload. (260+4)/8 == 33 bytes.
*/
class AudioFrameRtp : public SIP::AudioFrame {
// For AMR mode:
// The 3 fields are bit-aligned (closest packing) in "bandwidth-efficient" mode:
// | payload header (4 bits) | table of contents (6 bits) |
// followed by speech data (number of bits depends on type) | followed by padding to byte boundary.
// Payload Header:
// 4 bits; Codec Mode Request.
// Table of Contents:
// Single bit; F bit is 1 to indicate this frame is followed by another, so always 0 for us.
// 4 bits; Frame type index.
// Single Bit; Quality indicator: 0 means the frame is "severely damaged".
// Everything else is payload.
public:
static int RtpHeaderSize() { return 4; }
static int RtpPlusAmrHeaderSize() { return 4 + 6; }
AMRMode mMode;
static int headerSizeBits(AMRMode wMode) {
return (wMode == TCH_FS) ? RtpHeaderSize() : RtpPlusAmrHeaderSize();
}
// Create an empty RTP frame of specified mode and fill in the RTP header.
// Leave the ByteVector append pointer at the payload location so the caller can simply append the payload.
AudioFrameRtp(AMRMode wMode);
// Load the generic data from a ByteVector (aka AudioFrame) into this object and set the AMRMode so the RTP data can be decoded.
AudioFrameRtp(AMRMode wMode, const SIP::AudioFrame *genericFrame) : ByteVector(*genericFrame), mMode(wMode) {}
// Put the payload from this RTP frame into the specified BitVector, which must be the correct size.
void getPayload(BitVector *result) const;
};
}; // namespace GSM
#endif
// vim: ts=4 sw=4