Files
openbts/Transceiver52M/radioInterfaceResamp.cpp
Thomas Tsou a03aa57de4 Transceiver52M: Deallocate high level resources on shutdown
This primarily addresses the error case at initialization.
In the event that the transceiver fails to start, we should
be able cleanly shutdown and release while providing a useful
reason for exiting.

After the radio is started and threads launched, there
are no thread state variables or shutdown messaging between
threads, and the transceiver cannot be consistently
shutdown. This issue remains to be solved.

Signed-off-by: Thomas Tsou <tom@tsou.cc>

git-svn-id: http://wush.net/svn/range/software/public/openbts/trunk@6752 19bc5d8c-e614-43d4-8b26-e1612bc8e597
2013-10-17 06:19:23 +00:00

251 lines
6.5 KiB
C++

/*
* Radio device interface with sample rate conversion
* Written by Thomas Tsou <tom@tsou.cc>
*
* Copyright 2011, 2012, 2013 Free Software Foundation, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* See the COPYING file in the main directory for details.
*/
#include <radioInterface.h>
#include <Logger.h>
#include "Resampler.h"
extern "C" {
#include "convert.h"
}
/* Resampling parameters for 64 MHz clocking */
#define RESAMP_64M_INRATE 65
#define RESAMP_64M_OUTRATE 96
/* Resampling parameters for 100 MHz clocking */
#define RESAMP_100M_INRATE 52
#define RESAMP_100M_OUTRATE 75
/* Universal resampling parameters */
#define NUMCHUNKS 24
/*
* Resampling filter bandwidth scaling factor
* This narrows the filter cutoff relative to the output bandwidth
* of the polyphase resampler. At 4 samples-per-symbol using the
* 2 pulse Laurent GMSK approximation gives us below 0.5 degrees
* RMS phase error at the resampler output.
*/
#define RESAMP_TX4_FILTER 0.45
static Resampler *upsampler = NULL;
static Resampler *dnsampler = NULL;
static int resamp_inrate = 0;
static int resamp_inchunk = 0;
static int resamp_outrate = 0;
static int resamp_outchunk = 0;
short *convertRecvBuffer = NULL;
short *convertSendBuffer = NULL;
RadioInterfaceResamp::RadioInterfaceResamp(RadioDevice *wRadio,
int wReceiveOffset,
int wSPS,
GSM::Time wStartTime)
: RadioInterface(wRadio, wReceiveOffset, wSPS, wStartTime),
innerSendBuffer(NULL), outerSendBuffer(NULL),
innerRecvBuffer(NULL), outerRecvBuffer(NULL)
{
}
RadioInterfaceResamp::~RadioInterfaceResamp()
{
close();
}
void RadioInterfaceResamp::close()
{
delete innerSendBuffer;
delete outerSendBuffer;
delete innerRecvBuffer;
delete outerRecvBuffer;
delete upsampler;
delete dnsampler;
innerSendBuffer = NULL;
outerSendBuffer = NULL;
innerRecvBuffer = NULL;
outerRecvBuffer = NULL;
sendBuffer = NULL;
recvBuffer = NULL;
upsampler = NULL;
dnsampler = NULL;
RadioInterface::close();
}
/* Initialize I/O specific objects */
bool RadioInterfaceResamp::init(int type)
{
float cutoff = 1.0f;
close();
switch (type) {
case RadioDevice::RESAMP_64M:
resamp_inrate = RESAMP_64M_INRATE;
resamp_outrate = RESAMP_64M_OUTRATE;
break;
case RadioDevice::RESAMP_100M:
resamp_inrate = RESAMP_100M_INRATE;
resamp_outrate = RESAMP_100M_OUTRATE;
break;
case RadioDevice::NORMAL:
default:
LOG(ALERT) << "Invalid device configuration";
return false;
}
resamp_inchunk = resamp_inrate * 4;
resamp_outchunk = resamp_outrate * 4;
if (resamp_inchunk * NUMCHUNKS < 157 * mSPSTx * 2) {
LOG(ALERT) << "Invalid inner chunk size " << resamp_inchunk;
return false;
}
if (mSPSTx == 4)
cutoff = RESAMP_TX4_FILTER;
dnsampler = new Resampler(resamp_inrate, resamp_outrate);
if (!dnsampler->init()) {
LOG(ALERT) << "Rx resampler failed to initialize";
return false;
}
upsampler = new Resampler(resamp_outrate, resamp_inrate);
if (!upsampler->init(cutoff)) {
LOG(ALERT) << "Tx resampler failed to initialize";
return false;
}
/*
* Allocate high and low rate buffers. The high rate receive
* buffer and low rate transmit vectors feed into the resampler
* and requires headroom equivalent to the filter length. Low
* rate buffers are allocated in the main radio interface code.
*/
innerSendBuffer =
new signalVector(NUMCHUNKS * resamp_inchunk, upsampler->len());
outerSendBuffer =
new signalVector(NUMCHUNKS * resamp_outchunk);
outerRecvBuffer =
new signalVector(resamp_outchunk, dnsampler->len());
innerRecvBuffer =
new signalVector(NUMCHUNKS * resamp_inchunk / mSPSTx);
convertSendBuffer = new short[outerSendBuffer->size() * 2];
convertRecvBuffer = new short[outerRecvBuffer->size() * 2];
sendBuffer = innerSendBuffer;
recvBuffer = innerRecvBuffer;
return true;
}
/* Receive a timestamped chunk from the device */
void RadioInterfaceResamp::pullBuffer()
{
bool local_underrun;
int rc, num_recv;
if (recvCursor > innerRecvBuffer->size() - resamp_inchunk)
return;
/* Outer buffer access size is fixed */
num_recv = mRadio->readSamples(convertRecvBuffer,
resamp_outchunk,
&overrun,
readTimestamp,
&local_underrun);
if (num_recv != resamp_outchunk) {
LOG(ALERT) << "Receive error " << num_recv;
return;
}
convert_short_float((float *) outerRecvBuffer->begin(),
convertRecvBuffer, 2 * resamp_outchunk);
underrun |= local_underrun;
readTimestamp += (TIMESTAMP) resamp_outchunk;
/* Write to the end of the inner receive buffer */
rc = dnsampler->rotate((float *) outerRecvBuffer->begin(),
resamp_outchunk,
(float *) (innerRecvBuffer->begin() + recvCursor),
resamp_inchunk);
if (rc < 0) {
LOG(ALERT) << "Sample rate upsampling error";
}
recvCursor += resamp_inchunk;
}
/* Send a timestamped chunk to the device */
void RadioInterfaceResamp::pushBuffer()
{
int rc, chunks, num_sent;
int inner_len, outer_len;
if (sendCursor < resamp_inchunk)
return;
if (sendCursor > innerSendBuffer->size())
LOG(ALERT) << "Send buffer overflow";
chunks = sendCursor / resamp_inchunk;
inner_len = chunks * resamp_inchunk;
outer_len = chunks * resamp_outchunk;
/* Always send from the beginning of the buffer */
rc = upsampler->rotate((float *) innerSendBuffer->begin(), inner_len,
(float *) outerSendBuffer->begin(), outer_len);
if (rc < 0) {
LOG(ALERT) << "Sample rate downsampling error";
}
convert_float_short(convertSendBuffer,
(float *) outerSendBuffer->begin(),
powerScaling, 2 * outer_len);
num_sent = mRadio->writeSamples(convertSendBuffer,
outer_len,
&underrun,
writeTimestamp);
if (num_sent != outer_len) {
LOG(ALERT) << "Transmit error " << num_sent;
}
/* Shift remaining samples to beginning of buffer */
memmove(innerSendBuffer->begin(),
innerSendBuffer->begin() + inner_len,
(sendCursor - inner_len) * 2 * sizeof(float));
writeTimestamp += outer_len;
sendCursor -= inner_len;
assert(sendCursor >= 0);
}