mirror of
				https://github.com/RangeNetworks/openbts.git
				synced 2025-11-04 05:43:14 +00:00 
			
		
		
		
	This patch applies oversampling, when selected with 4 sps, to the downlink only, while running the receiver with minimal sampling at 1 sps. These split sample rates allow us to run a highly accurate downlink signal with minimal distortion, while keeping receive path channel filtering on the FPGA. Without this patch, we oversample the receive path and require a steep receive filter to get similar adjacent channel suppression as the FPGA halfband / CIC filter combination, which comes with a high computational cost. Signed-off-by: Thomas Tsou <tom@tsou.cc> git-svn-id: http://wush.net/svn/range/software/public/openbts/trunk@6747 19bc5d8c-e614-43d4-8b26-e1612bc8e597
		
			
				
	
	
		
			900 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			900 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
* Copyright 2008, 2009, 2010 Free Software Foundation, Inc.
 | 
						|
*
 | 
						|
* This software is distributed under the terms of the GNU Public License.
 | 
						|
* See the COPYING file in the main directory for details.
 | 
						|
*
 | 
						|
* This use of this software may be subject to additional restrictions.
 | 
						|
* See the LEGAL file in the main directory for details.
 | 
						|
 | 
						|
    This program is free software: you can redistribute it and/or modify
 | 
						|
    it under the terms of the GNU General Public License as published by
 | 
						|
    the Free Software Foundation, either version 3 of the License, or
 | 
						|
    (at your option) any later version.
 | 
						|
 | 
						|
    This program is distributed in the hope that it will be useful,
 | 
						|
    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
    GNU General Public License for more details.
 | 
						|
 | 
						|
    You should have received a copy of the GNU General Public License
 | 
						|
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
	Compilation switches
 | 
						|
	TRANSMIT_LOGGING	write every burst on the given slot to a log
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include "Transceiver.h"
 | 
						|
#include <Logger.h>
 | 
						|
 | 
						|
#ifdef HAVE_CONFIG_H
 | 
						|
#include "config.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#define USB_LATENCY_INTRVL		10,0
 | 
						|
 | 
						|
#if USE_UHD
 | 
						|
#  define USB_LATENCY_MIN		6,7
 | 
						|
#else
 | 
						|
#  define USB_LATENCY_MIN		1,1
 | 
						|
#endif
 | 
						|
 | 
						|
#define INIT_ENERGY_THRSHD		5.0f
 | 
						|
 | 
						|
Transceiver::Transceiver(int wBasePort,
 | 
						|
			 const char *TRXAddress,
 | 
						|
			 int wSPS,
 | 
						|
			 GSM::Time wTransmitLatency,
 | 
						|
			 RadioInterface *wRadioInterface)
 | 
						|
	:mDataSocket(wBasePort+2,TRXAddress,wBasePort+102),
 | 
						|
	 mControlSocket(wBasePort+1,TRXAddress,wBasePort+101),
 | 
						|
	 mClockSocket(wBasePort,TRXAddress,wBasePort+100),
 | 
						|
	 mSPSTx(wSPS), mSPSRx(1)
 | 
						|
{
 | 
						|
  GSM::Time startTime(random() % gHyperframe,0);
 | 
						|
 | 
						|
  mRxServiceLoopThread = new Thread(32768);
 | 
						|
  mTxServiceLoopThread = new Thread(32768);
 | 
						|
  mControlServiceLoopThread = new Thread(32768);       ///< thread to process control messages from GSM core
 | 
						|
  mTransmitPriorityQueueServiceLoopThread = new Thread(32768);///< thread to process transmit bursts from GSM core
 | 
						|
 | 
						|
  mRadioInterface = wRadioInterface;
 | 
						|
  mTransmitLatency = wTransmitLatency;
 | 
						|
  mTransmitDeadlineClock = startTime;
 | 
						|
  mLastClockUpdateTime = startTime;
 | 
						|
  mLatencyUpdateTime = startTime;
 | 
						|
  mRadioInterface->getClock()->set(startTime);
 | 
						|
  mMaxExpectedDelay = 0;
 | 
						|
 | 
						|
  txFullScale = mRadioInterface->fullScaleInputValue();
 | 
						|
  rxFullScale = mRadioInterface->fullScaleOutputValue();
 | 
						|
 | 
						|
  mOn = false;
 | 
						|
  mTxFreq = 0.0;
 | 
						|
  mRxFreq = 0.0;
 | 
						|
  mPower = -10;
 | 
						|
  mEnergyThreshold = INIT_ENERGY_THRSHD;
 | 
						|
  prevFalseDetectionTime = startTime;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Transceiver::~Transceiver()
 | 
						|
{
 | 
						|
  sigProcLibDestroy();
 | 
						|
  mTransmitPriorityQueue.clear();
 | 
						|
}
 | 
						|
 | 
						|
bool Transceiver::init()
 | 
						|
{
 | 
						|
  if (!sigProcLibSetup(mSPSTx)) {
 | 
						|
    LOG(ALERT) << "Failed to initialize signal processing library";
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // initialize filler tables with dummy bursts
 | 
						|
  for (int i = 0; i < 8; i++) {
 | 
						|
    signalVector* modBurst = modulateBurst(gDummyBurst,
 | 
						|
					   8 + (i % 4 == 0),
 | 
						|
					   mSPSTx);
 | 
						|
    if (!modBurst) {
 | 
						|
      sigProcLibDestroy();
 | 
						|
      LOG(ALERT) << "Failed to initialize filler table";
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    scaleVector(*modBurst,txFullScale);
 | 
						|
    fillerModulus[i]=26;
 | 
						|
    for (int j = 0; j < 102; j++) {
 | 
						|
      fillerTable[j][i] = new signalVector(*modBurst);
 | 
						|
    }
 | 
						|
 | 
						|
    delete modBurst;
 | 
						|
    mChanType[i] = NONE;
 | 
						|
    channelResponse[i] = NULL;
 | 
						|
    DFEForward[i] = NULL;
 | 
						|
    DFEFeedback[i] = NULL;
 | 
						|
    channelEstimateTime[i] = mTransmitDeadlineClock;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 
 | 
						|
radioVector *Transceiver::fixRadioVector(BitVector &burst,
 | 
						|
				 int RSSI,
 | 
						|
				 GSM::Time &wTime)
 | 
						|
{
 | 
						|
 | 
						|
  // modulate and stick into queue 
 | 
						|
  signalVector* modBurst = modulateBurst(burst,
 | 
						|
					 8 + (wTime.TN() % 4 == 0),
 | 
						|
					 mSPSTx);
 | 
						|
  scaleVector(*modBurst,txFullScale * pow(10,-RSSI/10));
 | 
						|
 | 
						|
  radioVector *newVec = new radioVector(*modBurst,wTime);
 | 
						|
  //fillerActive[ARFCN][wTime.TN()] = (ARFCN==0) || (RSSI != 255);
 | 
						|
 | 
						|
  delete modBurst;
 | 
						|
  return newVec;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef TRANSMIT_LOGGING
 | 
						|
void Transceiver::unModulateVector(signalVector wVector) 
 | 
						|
{
 | 
						|
  SoftVector *burst = demodulateBurst(wVector, mSPSTx, 1.0, 0.0);
 | 
						|
  LOG(DEBUG) << "LOGGED BURST: " << *burst;
 | 
						|
 | 
						|
/*
 | 
						|
  unsigned char burstStr[gSlotLen+1];
 | 
						|
  SoftVector::iterator burstItr = burst->begin();
 | 
						|
  for (int i = 0; i < gSlotLen; i++) {
 | 
						|
    // FIXME: Demod bits are inverted!
 | 
						|
    burstStr[i] = (unsigned char) ((*burstItr++)*255.0);
 | 
						|
  }
 | 
						|
  burstStr[gSlotLen]='\0';
 | 
						|
  LOG(DEBUG) << "LOGGED BURST: " << burstStr;
 | 
						|
*/
 | 
						|
  delete burst;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// If force, set the FillerTable regardless of channel.
 | 
						|
// If allocate, must allocate a copy of the incoming vector.
 | 
						|
void Transceiver::setFiller(radioVector *rv, bool allocate, bool force)
 | 
						|
{
 | 
						|
	int TN = rv->getTime().TN() & 0x07;	// (pat) Changed to 0x7 from 0x3.
 | 
						|
	if (!force && (IGPRS == mChanType[TN])) {
 | 
						|
		LOG(INFO) << "setFiller ignored"<<LOGVAR(TN);
 | 
						|
		if (!allocate) { delete rv; }
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	LOG(DEBUG) << "setFiller"<<LOGVAR(TN);
 | 
						|
	int modFN = rv->getTime().FN() % fillerModulus[TN];
 | 
						|
	delete fillerTable[modFN][TN];
 | 
						|
	if (allocate) {
 | 
						|
		fillerTable[modFN][TN] = new signalVector(*rv);
 | 
						|
	} else {
 | 
						|
		fillerTable[modFN][TN] = rv;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Transceiver::pushRadioVector(GSM::Time &nowTime)
 | 
						|
{
 | 
						|
 | 
						|
  // dump stale bursts, if any
 | 
						|
  while (radioVector* staleBurst = mTransmitPriorityQueue.getStaleBurst(nowTime)) {
 | 
						|
    // Even if the burst is stale, put it in the fillter table.
 | 
						|
    // (It might be an idle pattern.)
 | 
						|
    LOG(NOTICE) << "dumping STALE burst in TRX->USRP interface";
 | 
						|
    setFiller(staleBurst,false,false);
 | 
						|
  }
 | 
						|
 | 
						|
  // Everything from this point down operates in one TN period,
 | 
						|
  int TN = nowTime.TN();
 | 
						|
 | 
						|
  radioVector *sendVec = NULL;
 | 
						|
  // if queue contains data at the desired timestamp, stick it into FIFO
 | 
						|
  bool addFiller = true;
 | 
						|
  while (radioVector *next = (radioVector*) mTransmitPriorityQueue.getCurrentBurst(nowTime)) {
 | 
						|
    //LOG(DEBUG) << "transmitFIFO: wrote burst " << next << " at time: " << nowTime;
 | 
						|
    LOG(DEBUG) << (sendVec?"adding":"sending")<<" burst " << next << " at time: " << nowTime;
 | 
						|
    setFiller(next,true,false);
 | 
						|
    addFiller = false;
 | 
						|
    if (!sendVec) {
 | 
						|
      sendVec = next;
 | 
						|
    } else {
 | 
						|
      addVector(*sendVec,*next);
 | 
						|
      delete next;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // pull filler data, and set it up to be transmitted
 | 
						|
  if (addFiller){
 | 
						|
    int modFN = nowTime.FN() % fillerModulus[TN];
 | 
						|
    radioVector *tmpVec = new radioVector(*fillerTable[modFN][TN],nowTime);
 | 
						|
    if (IGPRS == mChanType[TN]) {
 | 
						|
      LOG(DEBUG) << (sendVec?"adding":"setting")<<" GPRS filler burst on T" << TN << " FN " << nowTime.FN();
 | 
						|
    }
 | 
						|
    if (!sendVec) {
 | 
						|
      sendVec = tmpVec;
 | 
						|
    } else {
 | 
						|
      addVector(*sendVec,*tmpVec);
 | 
						|
      delete tmpVec;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  //LOG(DEBUG) << "sendVec size: " << sendVec->size();
 | 
						|
 | 
						|
  // What if sendVec is still NULL?
 | 
						|
  // It can't be if there are no NULLs in the filler table.
 | 
						|
  mRadioInterface->driveTransmitRadio(*sendVec,false);
 | 
						|
  delete sendVec;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void Transceiver::setModulus(int timeslot)
 | 
						|
{
 | 
						|
  switch (mChanType[timeslot]) {
 | 
						|
  case NONE:
 | 
						|
  case I:
 | 
						|
  case II:
 | 
						|
  case III:
 | 
						|
  case FILL:
 | 
						|
  case IGPRS:
 | 
						|
    fillerModulus[timeslot] = 26;
 | 
						|
    break;
 | 
						|
  case IV:
 | 
						|
  case VI:
 | 
						|
  case V:
 | 
						|
    fillerModulus[timeslot] = 51;
 | 
						|
    break;
 | 
						|
    //case V: 
 | 
						|
  case VII:
 | 
						|
    fillerModulus[timeslot] = 102;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Transceiver::CorrType Transceiver::expectedCorrType(GSM::Time currTime)
 | 
						|
{
 | 
						|
  
 | 
						|
  unsigned burstTN = currTime.TN();
 | 
						|
  unsigned burstFN = currTime.FN();
 | 
						|
 | 
						|
  switch (mChanType[burstTN]) {
 | 
						|
  case NONE:
 | 
						|
    return OFF;
 | 
						|
    break;
 | 
						|
  case FILL:
 | 
						|
    return IDLE;
 | 
						|
    break;
 | 
						|
  case IGPRS:
 | 
						|
  case I:
 | 
						|
    return TSC;
 | 
						|
    /*if (burstFN % 26 == 25) 
 | 
						|
      return IDLE;
 | 
						|
    else
 | 
						|
      return TSC;*/
 | 
						|
    break;
 | 
						|
  case II:
 | 
						|
    return TSC;
 | 
						|
    break;
 | 
						|
  case III:
 | 
						|
    return TSC;
 | 
						|
    break;
 | 
						|
  case IV:
 | 
						|
  case VI:
 | 
						|
    return RACH;
 | 
						|
    break;
 | 
						|
  case V: {
 | 
						|
    int mod51 = burstFN % 51;
 | 
						|
    if ((mod51 <= 36) && (mod51 >= 14))
 | 
						|
      return RACH;
 | 
						|
    else if ((mod51 == 4) || (mod51 == 5))
 | 
						|
      return RACH;
 | 
						|
    else if ((mod51 == 45) || (mod51 == 46))
 | 
						|
      return RACH;
 | 
						|
    else
 | 
						|
      return TSC;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case VII:
 | 
						|
    if ((burstFN % 51 <= 14) && (burstFN % 51 >= 12))
 | 
						|
      return IDLE;
 | 
						|
    else
 | 
						|
      return TSC;
 | 
						|
    break;
 | 
						|
  case LOOPBACK:
 | 
						|
    if ((burstFN % 51 <= 50) && (burstFN % 51 >=48))
 | 
						|
      return IDLE;
 | 
						|
    else
 | 
						|
      return TSC;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    return OFF;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
    
 | 
						|
SoftVector *Transceiver::pullRadioVector(GSM::Time &wTime,
 | 
						|
				      int &RSSI,
 | 
						|
				      int &timingOffset)
 | 
						|
{
 | 
						|
  bool needDFE = false;
 | 
						|
 | 
						|
  radioVector *rxBurst = (radioVector *) mReceiveFIFO->get();
 | 
						|
 | 
						|
  if (!rxBurst) return NULL;
 | 
						|
 | 
						|
  LOG(DEBUG) << "receiveFIFO: read radio vector at time: " << rxBurst->getTime() << ", new size: " << mReceiveFIFO->size();
 | 
						|
 | 
						|
  int timeslot = rxBurst->getTime().TN();
 | 
						|
 | 
						|
  CorrType corrType = expectedCorrType(rxBurst->getTime());
 | 
						|
 | 
						|
  if ((corrType==OFF) || (corrType==IDLE)) {
 | 
						|
    delete rxBurst;
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 
 | 
						|
  // check to see if received burst has sufficient 
 | 
						|
  signalVector *vectorBurst = rxBurst;
 | 
						|
  complex amplitude = 0.0;
 | 
						|
  float TOA = 0.0;
 | 
						|
  float avgPwr = 0.0;
 | 
						|
#ifdef ENERGY_DETECT
 | 
						|
  if (!energyDetect(*vectorBurst, 20 * mSPSRx, mEnergyThreshold, &avgPwr)) {
 | 
						|
     LOG(DEBUG) << "Estimated Energy: " << sqrt(avgPwr) << ", at time " << rxBurst->getTime();
 | 
						|
     double framesElapsed = rxBurst->getTime()-prevFalseDetectionTime;
 | 
						|
     if (framesElapsed > 50) {  // if we haven't had any false detections for a while, lower threshold
 | 
						|
	mEnergyThreshold -= 10.0/10.0;
 | 
						|
        if (mEnergyThreshold < 0.0)
 | 
						|
          mEnergyThreshold = 0.0;
 | 
						|
 | 
						|
        prevFalseDetectionTime = rxBurst->getTime();
 | 
						|
     }
 | 
						|
     delete rxBurst;
 | 
						|
     return NULL;
 | 
						|
  }
 | 
						|
  LOG(DEBUG) << "Estimated Energy: " << sqrt(avgPwr) << ", at time " << rxBurst->getTime();
 | 
						|
#endif
 | 
						|
  // run the proper correlator
 | 
						|
  bool success = false;
 | 
						|
  if (corrType==TSC) {
 | 
						|
    LOG(DEBUG) << "looking for TSC at time: " << rxBurst->getTime();
 | 
						|
    signalVector *channelResp;
 | 
						|
    double framesElapsed = rxBurst->getTime()-channelEstimateTime[timeslot];
 | 
						|
    bool estimateChannel = false;
 | 
						|
    if ((framesElapsed > 50) || (channelResponse[timeslot]==NULL)) {
 | 
						|
	if (channelResponse[timeslot]) delete channelResponse[timeslot];
 | 
						|
        if (DFEForward[timeslot]) delete DFEForward[timeslot];
 | 
						|
        if (DFEFeedback[timeslot]) delete DFEFeedback[timeslot];
 | 
						|
        channelResponse[timeslot] = NULL;
 | 
						|
        DFEForward[timeslot] = NULL;
 | 
						|
        DFEFeedback[timeslot] = NULL;
 | 
						|
	estimateChannel = true;
 | 
						|
    }
 | 
						|
    if (!needDFE) estimateChannel = false;
 | 
						|
    float chanOffset;
 | 
						|
    success = analyzeTrafficBurst(*vectorBurst,
 | 
						|
				  mTSC,
 | 
						|
				  5.0,
 | 
						|
				  mSPSRx,
 | 
						|
				  &litude,
 | 
						|
				  &TOA,
 | 
						|
				  mMaxExpectedDelay, 
 | 
						|
				  estimateChannel,
 | 
						|
				  &channelResp,
 | 
						|
				  &chanOffset);
 | 
						|
    if (success) {
 | 
						|
      LOG(DEBUG) << "FOUND TSC!!!!!! " << amplitude << " " << TOA;
 | 
						|
      mEnergyThreshold -= 1.0F/10.0F;
 | 
						|
      if (mEnergyThreshold < 0.0) mEnergyThreshold = 0.0;
 | 
						|
      SNRestimate[timeslot] = amplitude.norm2()/(mEnergyThreshold*mEnergyThreshold+1.0); // this is not highly accurate
 | 
						|
      if (estimateChannel) {
 | 
						|
         LOG(DEBUG) << "estimating channel...";
 | 
						|
         channelResponse[timeslot] = channelResp;
 | 
						|
       	 chanRespOffset[timeslot] = chanOffset;
 | 
						|
         chanRespAmplitude[timeslot] = amplitude;
 | 
						|
	 scaleVector(*channelResp, complex(1.0,0.0)/amplitude);
 | 
						|
         designDFE(*channelResp, SNRestimate[timeslot], 7, &DFEForward[timeslot], &DFEFeedback[timeslot]);
 | 
						|
         channelEstimateTime[timeslot] = rxBurst->getTime();  
 | 
						|
         LOG(DEBUG) << "SNR: " << SNRestimate[timeslot] << ", DFE forward: " << *DFEForward[timeslot] << ", DFE backward: " << *DFEFeedback[timeslot];
 | 
						|
      }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      double framesElapsed = rxBurst->getTime()-prevFalseDetectionTime; 
 | 
						|
      LOG(DEBUG) << "wTime: " << rxBurst->getTime() << ", pTime: " << prevFalseDetectionTime << ", fElapsed: " << framesElapsed;
 | 
						|
      mEnergyThreshold += 10.0F/10.0F*exp(-framesElapsed);
 | 
						|
      prevFalseDetectionTime = rxBurst->getTime();
 | 
						|
      channelResponse[timeslot] = NULL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // RACH burst
 | 
						|
    success = detectRACHBurst(*vectorBurst, 6.0, mSPSRx, &litude, &TOA);
 | 
						|
    if (success) {
 | 
						|
      LOG(DEBUG) << "FOUND RACH!!!!!! " << amplitude << " " << TOA;
 | 
						|
      mEnergyThreshold -= (1.0F/10.0F);
 | 
						|
      if (mEnergyThreshold < 0.0) mEnergyThreshold = 0.0;
 | 
						|
      channelResponse[timeslot] = NULL; 
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      double framesElapsed = rxBurst->getTime()-prevFalseDetectionTime;
 | 
						|
      mEnergyThreshold += (1.0F/10.0F)*exp(-framesElapsed);
 | 
						|
      prevFalseDetectionTime = rxBurst->getTime();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  LOG(DEBUG) << "energy Threshold = " << mEnergyThreshold; 
 | 
						|
 | 
						|
  // demodulate burst
 | 
						|
  SoftVector *burst = NULL;
 | 
						|
  if ((rxBurst) && (success)) {
 | 
						|
    if ((corrType==RACH) || (!needDFE)) {
 | 
						|
      burst = demodulateBurst(*vectorBurst, mSPSRx, amplitude, TOA);
 | 
						|
    } else {
 | 
						|
      scaleVector(*vectorBurst,complex(1.0,0.0)/amplitude);
 | 
						|
      burst = equalizeBurst(*vectorBurst,
 | 
						|
			    TOA-chanRespOffset[timeslot],
 | 
						|
			    mSPSRx,
 | 
						|
			    *DFEForward[timeslot],
 | 
						|
			    *DFEFeedback[timeslot]);
 | 
						|
    }
 | 
						|
    wTime = rxBurst->getTime();
 | 
						|
    RSSI = (int) floor(20.0*log10(rxFullScale/amplitude.abs()));
 | 
						|
    LOG(DEBUG) << "RSSI: " << RSSI;
 | 
						|
    timingOffset = (int) round(TOA * 256.0 / mSPSRx);
 | 
						|
  }
 | 
						|
 | 
						|
  //if (burst) LOG(DEBUG) << "burst: " << *burst << '\n';
 | 
						|
 | 
						|
  delete rxBurst;
 | 
						|
 | 
						|
  return burst;
 | 
						|
}
 | 
						|
 | 
						|
void Transceiver::start()
 | 
						|
{
 | 
						|
  mControlServiceLoopThread->start((void * (*)(void*))ControlServiceLoopAdapter,(void*) this);
 | 
						|
}
 | 
						|
 | 
						|
void Transceiver::reset()
 | 
						|
{
 | 
						|
  mTransmitPriorityQueue.clear();
 | 
						|
  //mTransmitFIFO->clear();
 | 
						|
  //mReceiveFIFO->clear();
 | 
						|
}
 | 
						|
 | 
						|
  
 | 
						|
void Transceiver::driveControl()
 | 
						|
{
 | 
						|
 | 
						|
  int MAX_PACKET_LENGTH = 100;
 | 
						|
 | 
						|
  // check control socket
 | 
						|
  char buffer[MAX_PACKET_LENGTH];
 | 
						|
  int msgLen = -1;
 | 
						|
  buffer[0] = '\0';
 | 
						|
 
 | 
						|
  msgLen = mControlSocket.read(buffer);
 | 
						|
 | 
						|
  if (msgLen < 1) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  char cmdcheck[4];
 | 
						|
  char command[MAX_PACKET_LENGTH];
 | 
						|
  char response[MAX_PACKET_LENGTH];
 | 
						|
 | 
						|
  sscanf(buffer,"%3s %s",cmdcheck,command);
 | 
						|
 
 | 
						|
  writeClockInterface();
 | 
						|
 | 
						|
  if (strcmp(cmdcheck,"CMD")!=0) {
 | 
						|
    LOG(WARNING) << "bogus message on control interface";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  LOG(INFO) << "command is " << buffer;
 | 
						|
 | 
						|
  if (strcmp(command,"POWEROFF")==0) {
 | 
						|
    // turn off transmitter/demod
 | 
						|
    sprintf(response,"RSP POWEROFF 0"); 
 | 
						|
  }
 | 
						|
  else if (strcmp(command,"POWERON")==0) {
 | 
						|
    // turn on transmitter/demod
 | 
						|
    if (!mTxFreq || !mRxFreq) 
 | 
						|
      sprintf(response,"RSP POWERON 1");
 | 
						|
    else {
 | 
						|
      sprintf(response,"RSP POWERON 0");
 | 
						|
      if (!mOn) {
 | 
						|
        // Prepare for thread start
 | 
						|
        mPower = -20;
 | 
						|
        mRadioInterface->start();
 | 
						|
 | 
						|
        // Start radio interface threads.
 | 
						|
        mTxServiceLoopThread->start((void * (*)(void*))TxServiceLoopAdapter,(void*) this);
 | 
						|
        mRxServiceLoopThread->start((void * (*)(void*))RxServiceLoopAdapter,(void*) this);
 | 
						|
        mTransmitPriorityQueueServiceLoopThread->start((void * (*)(void*))TransmitPriorityQueueServiceLoopAdapter,(void*) this);
 | 
						|
        writeClockInterface();
 | 
						|
 | 
						|
        mOn = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (strcmp(command,"SETMAXDLY")==0) {
 | 
						|
    //set expected maximum time-of-arrival
 | 
						|
    int maxDelay;
 | 
						|
    sscanf(buffer,"%3s %s %d",cmdcheck,command,&maxDelay);
 | 
						|
    mMaxExpectedDelay = maxDelay; // 1 GSM symbol is approx. 1 km
 | 
						|
    sprintf(response,"RSP SETMAXDLY 0 %d",maxDelay);
 | 
						|
  }
 | 
						|
  else if (strcmp(command,"SETRXGAIN")==0) {
 | 
						|
    //set expected maximum time-of-arrival
 | 
						|
    int newGain;
 | 
						|
    sscanf(buffer,"%3s %s %d",cmdcheck,command,&newGain);
 | 
						|
    newGain = mRadioInterface->setRxGain(newGain);
 | 
						|
    mEnergyThreshold = INIT_ENERGY_THRSHD;
 | 
						|
    sprintf(response,"RSP SETRXGAIN 0 %d",newGain);
 | 
						|
  }
 | 
						|
  else if (strcmp(command,"NOISELEV")==0) {
 | 
						|
    if (mOn) {
 | 
						|
      sprintf(response,"RSP NOISELEV 0 %d",
 | 
						|
              (int) round(20.0*log10(rxFullScale/mEnergyThreshold)));
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      sprintf(response,"RSP NOISELEV 1  0");
 | 
						|
    }
 | 
						|
  }   
 | 
						|
  else if (strcmp(command,"SETPOWER")==0) {
 | 
						|
    // set output power in dB
 | 
						|
    int dbPwr;
 | 
						|
    sscanf(buffer,"%3s %s %d",cmdcheck,command,&dbPwr);
 | 
						|
    if (!mOn) 
 | 
						|
      sprintf(response,"RSP SETPOWER 1 %d",dbPwr);
 | 
						|
    else {
 | 
						|
      mPower = dbPwr;
 | 
						|
      mRadioInterface->setPowerAttenuation(dbPwr);
 | 
						|
      sprintf(response,"RSP SETPOWER 0 %d",dbPwr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (strcmp(command,"ADJPOWER")==0) {
 | 
						|
    // adjust power in dB steps
 | 
						|
    int dbStep;
 | 
						|
    sscanf(buffer,"%3s %s %d",cmdcheck,command,&dbStep);
 | 
						|
    if (!mOn) 
 | 
						|
      sprintf(response,"RSP ADJPOWER 1 %d",mPower);
 | 
						|
    else {
 | 
						|
      mPower += dbStep;
 | 
						|
      sprintf(response,"RSP ADJPOWER 0 %d",mPower);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#define FREQOFFSET 0//11.2e3
 | 
						|
  else if (strcmp(command,"RXTUNE")==0) {
 | 
						|
    // tune receiver
 | 
						|
    int freqKhz;
 | 
						|
    sscanf(buffer,"%3s %s %d",cmdcheck,command,&freqKhz);
 | 
						|
    mRxFreq = freqKhz*1.0e3+FREQOFFSET;
 | 
						|
    if (!mRadioInterface->tuneRx(mRxFreq)) {
 | 
						|
       LOG(ALERT) << "RX failed to tune";
 | 
						|
       sprintf(response,"RSP RXTUNE 1 %d",freqKhz);
 | 
						|
    }
 | 
						|
    else
 | 
						|
       sprintf(response,"RSP RXTUNE 0 %d",freqKhz);
 | 
						|
  }
 | 
						|
  else if (strcmp(command,"TXTUNE")==0) {
 | 
						|
    // tune txmtr
 | 
						|
    int freqKhz;
 | 
						|
    sscanf(buffer,"%3s %s %d",cmdcheck,command,&freqKhz);
 | 
						|
    //freqKhz = 890e3;
 | 
						|
    mTxFreq = freqKhz*1.0e3+FREQOFFSET;
 | 
						|
    if (!mRadioInterface->tuneTx(mTxFreq)) {
 | 
						|
       LOG(ALERT) << "TX failed to tune";
 | 
						|
       sprintf(response,"RSP TXTUNE 1 %d",freqKhz);
 | 
						|
    }
 | 
						|
    else
 | 
						|
       sprintf(response,"RSP TXTUNE 0 %d",freqKhz);
 | 
						|
  }
 | 
						|
  else if (strcmp(command,"SETTSC")==0) {
 | 
						|
    // set TSC
 | 
						|
    int TSC;
 | 
						|
    sscanf(buffer,"%3s %s %d",cmdcheck,command,&TSC);
 | 
						|
    if (mOn)
 | 
						|
      sprintf(response,"RSP SETTSC 1 %d",TSC);
 | 
						|
    else {
 | 
						|
      mTSC = TSC;
 | 
						|
      generateMidamble(mSPSRx, TSC);
 | 
						|
      sprintf(response,"RSP SETTSC 0 %d", TSC);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (strcmp(command,"HANDOVER")==0) {
 | 
						|
    int  timeslot;
 | 
						|
    sscanf(buffer,"%3s %s %d",cmdcheck,command,×lot);
 | 
						|
    //sscanf(buffer,"%3s %s %d %d %d",cmdcheck,command,×lot,&corrCode,&ARFCN);
 | 
						|
    if ((timeslot < 0) || (timeslot > 7)) {
 | 
						|
      LOG(ERR) << "bogus message on control interface";
 | 
						|
      sprintf(response,"RSP HANDOVER 1 %d",timeslot);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      //mHandoverActive[ARFCN][timeslot] = true;
 | 
						|
      //sprintf(response,"RSP HANDOVER 0 %d",timeslot);
 | 
						|
      //handover fails! -kurtis
 | 
						|
      sprintf(response,"RSP HANDOVER 1 %d",timeslot);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (strcmp(command,"NOHANDOVER")==0) {
 | 
						|
    int  timeslot;
 | 
						|
    sscanf(buffer,"%3s %s %d",cmdcheck,command,×lot);
 | 
						|
    //sscanf(buffer,"%3s %s %d %d %d",cmdcheck,command,×lot,&corrCode,&ARFCN);
 | 
						|
    if ((timeslot < 0) || (timeslot > 7)) {
 | 
						|
      LOG(ERR) << "bogus message on control interface";
 | 
						|
      sprintf(response,"RSP NOHANDOVER 1 %d",timeslot);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      //mHandoverActive[ARFCN][timeslot] = false;
 | 
						|
      //sprintf(response,"RSP NOHANDOVER 0 %d",timeslot);
 | 
						|
      //hanover fails! -kurtis
 | 
						|
      sprintf(response,"RSP NOHANDOVER 1 %d",timeslot);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else if (strcmp(command,"SETSLOT")==0) {
 | 
						|
    // set TSC 
 | 
						|
    int  corrCode;
 | 
						|
    int  timeslot;
 | 
						|
    sscanf(buffer,"%3s %s %d %d",cmdcheck,command,×lot,&corrCode);
 | 
						|
    if ((timeslot < 0) || (timeslot > 7)) {
 | 
						|
      LOG(WARNING) << "bogus message on control interface";
 | 
						|
      sprintf(response,"RSP SETSLOT 1 %d %d",timeslot,corrCode);
 | 
						|
      return;
 | 
						|
    }     
 | 
						|
    mChanType[timeslot] = (ChannelCombination) corrCode;
 | 
						|
    setModulus(timeslot);
 | 
						|
    sprintf(response,"RSP SETSLOT 0 %d %d",timeslot,corrCode);
 | 
						|
 | 
						|
  }
 | 
						|
  else if (strcmp(command,"READFACTORY")==0) {
 | 
						|
    // TODO: Actually support reading data from various USRPs
 | 
						|
    int ret = 0; //fail everything -kurtis
 | 
						|
    //sprintf(response,"RSP READFACTORY 0 %d", ret);
 | 
						|
    // READFACTORY FAILS
 | 
						|
    sprintf(response,"RSP READFACTORY 1 %d", ret);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    LOG(WARNING) << "bogus command " << command << " on control interface.";
 | 
						|
  }
 | 
						|
 | 
						|
  mControlSocket.write(response,strlen(response)+1);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
bool Transceiver::driveTransmitPriorityQueue() 
 | 
						|
{
 | 
						|
 | 
						|
  char buffer[gSlotLen+50];
 | 
						|
 | 
						|
  // check data socket
 | 
						|
  size_t msgLen = mDataSocket.read(buffer);
 | 
						|
 | 
						|
  if (msgLen!=gSlotLen+1+4+1) {
 | 
						|
    LOG(ERR) << "badly formatted packet on GSM->TRX interface";
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  int timeSlot = (int) buffer[0];
 | 
						|
  int fillerFlag = timeSlot & SET_FILLER_FRAME;	// Magic flag says this is a filler burst.
 | 
						|
  timeSlot = timeSlot & 0x7;
 | 
						|
  uint64_t frameNum = 0;
 | 
						|
  for (int i = 0; i < 4; i++)
 | 
						|
    frameNum = (frameNum << 8) | (0x0ff & buffer[i+1]);
 | 
						|
 | 
						|
 
 | 
						|
  /*
 | 
						|
  if (GSM::Time(frameNum,timeSlot) >  mTransmitDeadlineClock + GSM::Time(51,0)) {
 | 
						|
    // stale burst
 | 
						|
    //LOG(DEBUG) << "FAST! "<< GSM::Time(frameNum,timeSlot);
 | 
						|
    //writeClockInterface();
 | 
						|
    }*/
 | 
						|
 | 
						|
/*
 | 
						|
  DAB -- Just let these go through the demod.
 | 
						|
  if (GSM::Time(frameNum,timeSlot) < mTransmitDeadlineClock) {
 | 
						|
    // stale burst from GSM core
 | 
						|
    LOG(NOTICE) << "STALE packet on GSM->TRX interface at time "<< GSM::Time(frameNum,timeSlot);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
*/
 | 
						|
  
 | 
						|
  // periodically update GSM core clock
 | 
						|
  //LOG(DEBUG) << "mTransmitDeadlineClock " << mTransmitDeadlineClock
 | 
						|
  //		<< " mLastClockUpdateTime " << mLastClockUpdateTime;
 | 
						|
  if (mTransmitDeadlineClock > mLastClockUpdateTime + GSM::Time(216,0))
 | 
						|
    writeClockInterface();
 | 
						|
 | 
						|
  LOG(DEBUG) << "rcvd. burst at: " << GSM::Time(frameNum,timeSlot) <<LOGVAR(fillerFlag);
 | 
						|
  
 | 
						|
  int RSSI = (int) buffer[5];
 | 
						|
  static BitVector newBurst(gSlotLen);
 | 
						|
  BitVector::iterator itr = newBurst.begin();
 | 
						|
  char *bufferItr = buffer+6;
 | 
						|
  while (itr < newBurst.end()) 
 | 
						|
    *itr++ = *bufferItr++;
 | 
						|
  
 | 
						|
  GSM::Time currTime = GSM::Time(frameNum,timeSlot);
 | 
						|
 | 
						|
  radioVector *newVec = fixRadioVector(newBurst,RSSI,currTime);
 | 
						|
 | 
						|
  if (false && fillerFlag) {
 | 
						|
	setFiller(newVec,false,true);
 | 
						|
  } else {
 | 
						|
	mTransmitPriorityQueue.write(newVec);
 | 
						|
  }
 | 
						|
  
 | 
						|
  //LOG(DEBUG) "added burst - time: " << currTime << ", RSSI: " << RSSI; // << ", data: " << newBurst; 
 | 
						|
 | 
						|
  return true;
 | 
						|
 | 
						|
 | 
						|
}
 | 
						|
 
 | 
						|
void Transceiver::driveReceiveFIFO() 
 | 
						|
{
 | 
						|
 | 
						|
  SoftVector *rxBurst = NULL;
 | 
						|
  int RSSI;
 | 
						|
  int TOA;  // in 1/256 of a symbol
 | 
						|
  GSM::Time burstTime;
 | 
						|
 | 
						|
  mRadioInterface->driveReceiveRadio();
 | 
						|
 | 
						|
  rxBurst = pullRadioVector(burstTime,RSSI,TOA);
 | 
						|
 | 
						|
  if (rxBurst) { 
 | 
						|
 | 
						|
    LOG(DEBUG) << "burst parameters: "
 | 
						|
	  << " time: " << burstTime
 | 
						|
	  << " RSSI: " << RSSI
 | 
						|
	  << " TOA: "  << TOA
 | 
						|
	  << " bits: " << *rxBurst;
 | 
						|
    
 | 
						|
    char burstString[gSlotLen+10];
 | 
						|
    burstString[0] = burstTime.TN();
 | 
						|
    for (int i = 0; i < 4; i++)
 | 
						|
      burstString[1+i] = (burstTime.FN() >> ((3-i)*8)) & 0x0ff;
 | 
						|
    burstString[5] = RSSI;
 | 
						|
    burstString[6] = (TOA >> 8) & 0x0ff;
 | 
						|
    burstString[7] = TOA & 0x0ff;
 | 
						|
    SoftVector::iterator burstItr = rxBurst->begin();
 | 
						|
 | 
						|
    for (unsigned int i = 0; i < gSlotLen; i++) {
 | 
						|
      burstString[8+i] =(char) round((*burstItr++)*255.0);
 | 
						|
    }
 | 
						|
    burstString[gSlotLen+9] = '\0';
 | 
						|
    delete rxBurst;
 | 
						|
 | 
						|
    mDataSocket.write(burstString,gSlotLen+10);
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void Transceiver::driveTransmitFIFO() 
 | 
						|
{
 | 
						|
 | 
						|
  /**
 | 
						|
      Features a carefully controlled latency mechanism, to 
 | 
						|
      assure that transmit packets arrive at the radio/USRP
 | 
						|
      before they need to be transmitted.
 | 
						|
 | 
						|
      Deadline clock indicates the burst that needs to be
 | 
						|
      pushed into the FIFO right NOW.  If transmit queue does
 | 
						|
      not have a burst, stick in filler data.
 | 
						|
  */
 | 
						|
 | 
						|
 | 
						|
  RadioClock *radioClock = (mRadioInterface->getClock());
 | 
						|
  
 | 
						|
  if (mOn) {
 | 
						|
    //radioClock->wait(); // wait until clock updates
 | 
						|
    LOG(DEBUG) << "radio clock " << radioClock->get();
 | 
						|
    while (radioClock->get() + mTransmitLatency > mTransmitDeadlineClock) {
 | 
						|
      // if underrun, then we're not providing bursts to radio/USRP fast
 | 
						|
      //   enough.  Need to increase latency by one GSM frame.
 | 
						|
      if (mRadioInterface->getWindowType() == RadioDevice::TX_WINDOW_USRP1) {
 | 
						|
        if (mRadioInterface->isUnderrun()) {
 | 
						|
          // only update latency at the defined frame interval
 | 
						|
          if (radioClock->get() > mLatencyUpdateTime + GSM::Time(USB_LATENCY_INTRVL)) {
 | 
						|
            mTransmitLatency = mTransmitLatency + GSM::Time(1,0);
 | 
						|
            LOG(INFO) << "new latency: " << mTransmitLatency;
 | 
						|
            mLatencyUpdateTime = radioClock->get();
 | 
						|
          }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          // if underrun hasn't occurred in the last sec (216 frames) drop
 | 
						|
          //    transmit latency by a timeslot
 | 
						|
          if (mTransmitLatency > GSM::Time(USB_LATENCY_MIN)) {
 | 
						|
              if (radioClock->get() > mLatencyUpdateTime + GSM::Time(216,0)) {
 | 
						|
              mTransmitLatency.decTN();
 | 
						|
              LOG(INFO) << "reduced latency: " << mTransmitLatency;
 | 
						|
              mLatencyUpdateTime = radioClock->get();
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // time to push burst to transmit FIFO
 | 
						|
      pushRadioVector(mTransmitDeadlineClock);
 | 
						|
      mTransmitDeadlineClock.incTN();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  radioClock->wait();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void Transceiver::writeClockInterface()
 | 
						|
{
 | 
						|
  char command[50];
 | 
						|
  // FIXME -- This should be adaptive.
 | 
						|
  sprintf(command,"IND CLOCK %llu",(unsigned long long) (mTransmitDeadlineClock.FN()+2));
 | 
						|
 | 
						|
  LOG(INFO) << "ClockInterface: sending " << command;
 | 
						|
 | 
						|
  mClockSocket.write(command,strlen(command)+1);
 | 
						|
 | 
						|
  mLastClockUpdateTime = mTransmitDeadlineClock;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void *RxServiceLoopAdapter(Transceiver *transceiver)
 | 
						|
{
 | 
						|
  transceiver->setPriority();
 | 
						|
 | 
						|
  while (1) {
 | 
						|
    transceiver->driveReceiveFIFO();
 | 
						|
    pthread_testcancel();
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void *TxServiceLoopAdapter(Transceiver *transceiver)
 | 
						|
{
 | 
						|
  while (1) {
 | 
						|
    transceiver->driveTransmitFIFO();
 | 
						|
    pthread_testcancel();
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void *ControlServiceLoopAdapter(Transceiver *transceiver)
 | 
						|
{
 | 
						|
  while (1) {
 | 
						|
    transceiver->driveControl();
 | 
						|
    pthread_testcancel();
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void *TransmitPriorityQueueServiceLoopAdapter(Transceiver *transceiver)
 | 
						|
{
 | 
						|
  while (1) {
 | 
						|
    bool stale = false;
 | 
						|
    // Flush the UDP packets until a successful transfer.
 | 
						|
    while (!transceiver->driveTransmitPriorityQueue()) {
 | 
						|
      stale = true; 
 | 
						|
    }
 | 
						|
    if (stale) {
 | 
						|
      // If a packet was stale, remind the GSM stack of the clock.
 | 
						|
      transceiver->writeClockInterface();
 | 
						|
    }
 | 
						|
    pthread_testcancel();
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 |