Files
openbts/Transceiver52M/USRPDevice.h
Thomas Tsou 0e0c81de63 Transceiver52M: Set resampling option automatically based on device
Remove the built time resampling selection and link both options.
Move the normal push/pullBuffer() calls back to the base class and
overload them in the inherited resampling class.

USRP2/N2xx devices are the only devices that require resampling so
return that resampling is necessary on the device open(), which is
the point at which the device type will be known.

The GSM transceiver only operates at a whole number multiple of
the GSM rate and doesn't care about the actual device rate and
if resampling is used. Therefore GSM specific portion of the
transceiver should only need to submit the samples-per-symbol
value to the device interface.

Then, the device should be able to determine the appropriate
sample rate (400 ksps or 270.833 ksps) and if resampling is
appropriate.

Signed-off-by: Thomas Tsou <tom@tsou.cc>

git-svn-id: http://wush.net/svn/range/software/public/openbts/trunk@6723 19bc5d8c-e614-43d4-8b26-e1612bc8e597
2013-10-17 06:17:35 +00:00

212 lines
6.4 KiB
C++

/*
* Copyright 2008 Free Software Foundation, Inc.
*
* This software is distributed under multiple licenses; see the COPYING file in the main directory for licensing information for this specific distribuion.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef _USRP_DEVICE_H_
#define _USRP_DEVICE_H_
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "radioDevice.h"
#ifdef HAVE_LIBUSRP_3_3 // [
# include <usrp/usrp_standard.h>
# include <usrp/usrp_bytesex.h>
# include <usrp/usrp_prims.h>
#else // HAVE_LIBUSRP_3_3 ][
# include "usrp_standard.h"
# include "usrp_bytesex.h"
# include "usrp_prims.h"
#endif // !HAVE_LIBUSRP_3_3 ]
#include <sys/time.h>
#include <math.h>
#include <string>
#include <iostream>
/** Define types which are not defined in libusrp-3.1 */
#ifndef HAVE_LIBUSRP_3_2
#include <boost/shared_ptr.hpp>
typedef boost::shared_ptr<usrp_standard_tx> usrp_standard_tx_sptr;
typedef boost::shared_ptr<usrp_standard_rx> usrp_standard_rx_sptr;
#endif // HAVE_LIBUSRP_3_2
/** A class to handle a USRP rev 4, with a two RFX900 daughterboards */
class USRPDevice: public RadioDevice {
private:
static const double masterClockRate; ///< the USRP clock rate
double desiredSampleRate; ///< the desired sampling rate
usrp_standard_rx_sptr m_uRx; ///< the USRP receiver
usrp_standard_tx_sptr m_uTx; ///< the USRP transmitter
db_base_sptr m_dbRx; ///< rx daughterboard
db_base_sptr m_dbTx; ///< tx daughterboard
usrp_subdev_spec rxSubdevSpec;
usrp_subdev_spec txSubdevSpec;
double actualSampleRate; ///< the actual USRP sampling rate
unsigned int decimRate; ///< the USRP decimation rate
unsigned long long samplesRead; ///< number of samples read from USRP
unsigned long long samplesWritten; ///< number of samples sent to USRP
bool started; ///< flag indicates USRP has started
bool skipRx; ///< set if USRP is transmit-only.
static const unsigned int currDataSize_log2 = 21;
static const unsigned long currDataSize = (1 << currDataSize_log2);
short *data;
unsigned long dataStart;
unsigned long dataEnd;
TIMESTAMP timeStart;
TIMESTAMP timeEnd;
bool isAligned;
Mutex writeLock;
short *currData; ///< internal data buffer when reading from USRP
TIMESTAMP currTimestamp; ///< timestamp of internal data buffer
unsigned currLen; ///< size of internal data buffer
TIMESTAMP timestampOffset; ///< timestamp offset b/w Tx and Rx blocks
TIMESTAMP latestWriteTimestamp; ///< timestamp of most recent ping command
TIMESTAMP pingTimestamp; ///< timestamp of most recent ping response
static const TIMESTAMP PINGOFFSET = 272; ///< undetermined delay b/w ping response timestamp and true receive timestamp
unsigned long hi32Timestamp;
unsigned long lastPktTimestamp;
double rxGain;
#ifdef SWLOOPBACK
short loopbackBuffer[1000000];
int loopbackBufferSize;
double samplePeriod;
struct timeval startTime;
struct timeval lastReadTime;
bool firstRead;
#endif
/** Set the transmission frequency */
bool tx_setFreq(double freq, double *actual_freq);
/** Set the receiver frequency */
bool rx_setFreq(double freq, double *actual_freq);
public:
/** Object constructor */
USRPDevice(int sps, bool skipRx);
/** Instantiate the USRP */
int open(const std::string &);
/** Start the USRP */
bool start();
/** Stop the USRP */
bool stop();
/** Set priority not supported */
void setPriority() { return; }
enum TxWindowType getWindowType() { return TX_WINDOW_USRP1; }
/**
Read samples from the USRP.
@param buf preallocated buf to contain read result
@param len number of samples desired
@param overrun Set if read buffer has been overrun, e.g. data not being read fast enough
@param timestamp The timestamp of the first samples to be read
@param underrun Set if USRP does not have data to transmit, e.g. data not being sent fast enough
@param RSSI The received signal strength of the read result
@return The number of samples actually read
*/
int readSamples(short *buf, int len, bool *overrun,
TIMESTAMP timestamp = 0xffffffff,
bool *underrun = NULL,
unsigned *RSSI = NULL);
/**
Write samples to the USRP.
@param buf Contains the data to be written.
@param len number of samples to write.
@param underrun Set if USRP does not have data to transmit, e.g. data not being sent fast enough
@param timestamp The timestamp of the first sample of the data buffer.
@param isControl Set if data is a control packet, e.g. a ping command
@return The number of samples actually written
*/
int writeSamples(short *buf, int len, bool *underrun,
TIMESTAMP timestamp = 0xffffffff,
bool isControl = false);
/** Update the alignment between the read and write timestamps */
bool updateAlignment(TIMESTAMP timestamp);
/** Set the transmitter frequency */
bool setTxFreq(double wFreq);
/** Set the receiver frequency */
bool setRxFreq(double wFreq);
/** Returns the starting write Timestamp*/
TIMESTAMP initialWriteTimestamp(void) { return 20000;}
/** Returns the starting read Timestamp*/
TIMESTAMP initialReadTimestamp(void) { return 20000;}
/** returns the full-scale transmit amplitude **/
double fullScaleInputValue() {return 13500.0;}
/** returns the full-scale receive amplitude **/
double fullScaleOutputValue() {return 9450.0;}
/** sets the receive chan gain, returns the gain setting **/
double setRxGain(double dB);
/** get the current receive gain */
double getRxGain(void) {return rxGain;}
/** return maximum Rx Gain **/
double maxRxGain(void);
/** return minimum Rx Gain **/
double minRxGain(void);
/** sets the transmit chan gain, returns the gain setting **/
double setTxGain(double dB);
/** return maximum Tx Gain **/
double maxTxGain(void);
/** return minimum Rx Gain **/
double minTxGain(void);
/** Return internal status values */
inline double getTxFreq() { return 0;}
inline double getRxFreq() { return 0;}
inline double getSampleRate() {return actualSampleRate;}
inline double numberRead() { return samplesRead; }
inline double numberWritten() { return samplesWritten;}
};
#endif // _USRP_DEVICE_H_