Files
openbts/Transceiver52M/USRPDevice.cpp
Tom Tsou c438a5a689 Transceiver52M: Add option to explicitly set GPSDO reference
Before UHD version 3.9.0 on-board GPSDO modules for USRP
devices were automatically enabled if detected. After UHD
version 3.9.0 the UHD behavior changed to require explicit
setting of the reference to enable GPSDO use.

Modify the interfaces to pass 'internal', 'external' and
'gpsdo' reference options from configuration database into
the UHD driver layer. Convert the 'TRX.reference' entry in
the configuration from a boolean value to string.
2016-09-12 06:13:42 -07:00

576 lines
15 KiB
C++

/*
* Copyright 2008, 2009 Free Software Foundation, Inc.
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Compilation Flags
SWLOOPBACK compile for software loopback testing
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "Threads.h"
#include "USRPDevice.h"
#include <Logger.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
using namespace std;
enum dboardConfigType {
TXA_RXB,
TXB_RXA,
TXA_RXA,
TXB_RXB
};
#ifdef SINGLEDB
const dboardConfigType dboardConfig = TXA_RXA;
#else
const dboardConfigType dboardConfig = TXA_RXB;
#endif
const double USRPDevice::masterClockRate = 52.0e6;
USRPDevice::USRPDevice(int sps, bool skipRx)
: skipRx(skipRx)
{
LOG(INFO) << "creating USRP device...";
this->sps = sps;
decimRate = (unsigned int) round(masterClockRate/((GSMRATE) * (double) sps));
actualSampleRate = masterClockRate/decimRate;
rxGain = 0;
/*
* Undetermined delay b/w ping response timestamp and true
* receive timestamp. Values are empirically measured. With
* split sample rate Tx/Rx - 4/1 sps we need to need to
* compensate for advance rather than delay.
*/
if (sps == 1)
pingOffset = 272;
else if (sps == 4)
pingOffset = 269 - 7500;
else
pingOffset = 0;
#ifdef SWLOOPBACK
samplePeriod = 1.0e6/actualSampleRate;
loopbackBufferSize = 0;
gettimeofday(&lastReadTime,NULL);
firstRead = false;
#endif
}
int USRPDevice::open(const std::string &, ReferenceType)
{
writeLock.unlock();
LOG(INFO) << "opening USRP device..";
#ifndef SWLOOPBACK
string rbf = "std_inband.rbf";
//string rbf = "inband_1rxhb_1tx.rbf";
m_uRx.reset();
if (!skipRx) {
try {
m_uRx = usrp_standard_rx_sptr(usrp_standard_rx::make(
0, decimRate * sps, 1, -1,
usrp_standard_rx::FPGA_MODE_NORMAL,
1024, 16 * 8, rbf));
m_uRx->set_fpga_master_clock_freq(masterClockRate);
}
catch(...) {
LOG(ALERT) << "make failed on Rx";
m_uRx.reset();
return -1;
}
if (m_uRx->fpga_master_clock_freq() != masterClockRate)
{
LOG(ALERT) << "WRONG FPGA clock freq = " << m_uRx->fpga_master_clock_freq()
<< ", desired clock freq = " << masterClockRate;
m_uRx.reset();
return -1;
}
}
try {
m_uTx = usrp_standard_tx_sptr(usrp_standard_tx::make(
0, decimRate * 2, 1, -1,
1024, 16 * 8, rbf));
m_uTx->set_fpga_master_clock_freq(masterClockRate);
}
catch(...) {
LOG(ALERT) << "make failed on Tx";
m_uTx.reset();
return -1;
}
if (m_uTx->fpga_master_clock_freq() != masterClockRate)
{
LOG(ALERT) << "WRONG FPGA clock freq = " << m_uTx->fpga_master_clock_freq()
<< ", desired clock freq = " << masterClockRate;
m_uTx.reset();
return -1;
}
if (!skipRx) m_uRx->stop();
m_uTx->stop();
#endif
switch (dboardConfig) {
case TXA_RXB:
txSubdevSpec = usrp_subdev_spec(0,0);
rxSubdevSpec = usrp_subdev_spec(1,0);
break;
case TXB_RXA:
txSubdevSpec = usrp_subdev_spec(1,0);
rxSubdevSpec = usrp_subdev_spec(0,0);
break;
case TXA_RXA:
txSubdevSpec = usrp_subdev_spec(0,0);
rxSubdevSpec = usrp_subdev_spec(0,0);
break;
case TXB_RXB:
txSubdevSpec = usrp_subdev_spec(1,0);
rxSubdevSpec = usrp_subdev_spec(1,0);
break;
default:
txSubdevSpec = usrp_subdev_spec(0,0);
rxSubdevSpec = usrp_subdev_spec(1,0);
}
m_dbTx = m_uTx->selected_subdev(txSubdevSpec);
m_dbRx = m_uRx->selected_subdev(rxSubdevSpec);
samplesRead = 0;
samplesWritten = 0;
started = false;
return NORMAL;
}
bool USRPDevice::start()
{
LOG(INFO) << "starting USRP...";
#ifndef SWLOOPBACK
if (!m_uRx && !skipRx) return false;
if (!m_uTx) return false;
if (!skipRx) m_uRx->stop();
m_uTx->stop();
writeLock.lock();
// power up and configure daughterboards
m_dbTx->set_enable(true);
m_uTx->set_mux(m_uTx->determine_tx_mux_value(txSubdevSpec));
m_uRx->set_mux(m_uRx->determine_rx_mux_value(rxSubdevSpec));
if (!m_dbRx->select_rx_antenna(1))
m_dbRx->select_rx_antenna(0);
writeLock.unlock();
// Set gains to midpoint
setTxGain((minTxGain() + maxTxGain()) / 2);
setRxGain((minRxGain() + maxRxGain()) / 2);
data = new short[currDataSize];
dataStart = 0;
dataEnd = 0;
timeStart = 0;
timeEnd = 0;
timestampOffset = 0;
latestWriteTimestamp = 0;
lastPktTimestamp = 0;
hi32Timestamp = 0;
isAligned = false;
if (!skipRx)
started = (m_uRx->start() && m_uTx->start());
else
started = m_uTx->start();
return started;
#else
gettimeofday(&lastReadTime,NULL);
return true;
#endif
}
bool USRPDevice::stop()
{
#ifndef SWLOOPBACK
if (!m_uRx) return false;
if (!m_uTx) return false;
delete[] currData;
started = !(m_uRx->stop() && m_uTx->stop());
return !started;
#else
return true;
#endif
}
double USRPDevice::maxTxGain()
{
return m_dbTx->gain_max();
}
double USRPDevice::minTxGain()
{
return m_dbTx->gain_min();
}
double USRPDevice::maxRxGain()
{
return m_dbRx->gain_max();
}
double USRPDevice::minRxGain()
{
return m_dbRx->gain_min();
}
double USRPDevice::setTxGain(double dB) {
writeLock.lock();
if (dB > maxTxGain()) dB = maxTxGain();
if (dB < minTxGain()) dB = minTxGain();
LOG(NOTICE) << "Setting TX gain to " << dB << " dB.";
if (!m_dbTx->set_gain(dB))
LOG(ERR) << "Error setting TX gain";
writeLock.unlock();
return dB;
}
double USRPDevice::setRxGain(double dB) {
writeLock.lock();
if (dB > maxRxGain()) dB = maxRxGain();
if (dB < minRxGain()) dB = minRxGain();
LOG(NOTICE) << "Setting RX gain to " << dB << " dB.";
if (!m_dbRx->set_gain(dB))
LOG(ERR) << "Error setting RX gain";
writeLock.unlock();
return dB;
}
// NOTE: Assumes sequential reads
int USRPDevice::readSamples(short *buf, int len, bool *overrun,
TIMESTAMP timestamp,
bool *underrun,
unsigned *RSSI)
{
#ifndef SWLOOPBACK
if (!m_uRx) return 0;
timestamp += timestampOffset;
if (timestamp + len < timeStart) {
memset(buf,0,len*2*sizeof(short));
return len;
}
if (underrun) *underrun = false;
uint32_t readBuf[2000];
while (1) {
//guestimate USB read size
int readLen=0;
{
int numSamplesNeeded = timestamp + len - timeEnd;
if (numSamplesNeeded <=0) break;
readLen = 512 * ((int) ceil((float) numSamplesNeeded/126.0));
if (readLen > 8000) readLen= (8000/512)*512;
}
// read USRP packets, parse and save A/D data as needed
readLen = m_uRx->read((void *)readBuf,readLen,overrun);
for(int pktNum = 0; pktNum < (readLen/512); pktNum++) {
// tmpBuf points to start of a USB packet
uint32_t* tmpBuf = (uint32_t *) (readBuf+pktNum*512/4);
TIMESTAMP pktTimestamp = usrp_to_host_u32(tmpBuf[1]);
uint32_t word0 = usrp_to_host_u32(tmpBuf[0]);
uint32_t chan = (word0 >> 16) & 0x1f;
unsigned payloadSz = word0 & 0x1ff;
LOG(DEBUG) << "first two bytes: " << hex << word0 << " " << dec << pktTimestamp;
bool incrementHi32 = ((lastPktTimestamp & 0x0ffffffffll) > pktTimestamp);
if (incrementHi32 && (timeStart!=0)) {
LOG(DEBUG) << "high 32 increment!!!";
hi32Timestamp++;
}
pktTimestamp = (((TIMESTAMP) hi32Timestamp) << 32) | pktTimestamp;
lastPktTimestamp = pktTimestamp;
if (chan == 0x01f) {
// control reply, check to see if its ping reply
uint32_t word2 = usrp_to_host_u32(tmpBuf[2]);
if ((word2 >> 16) == ((0x01 << 8) | 0x02)) {
timestamp -= timestampOffset;
timestampOffset = pktTimestamp - pingTimestamp + pingOffset;
LOG(DEBUG) << "updating timestamp offset to: " << timestampOffset;
timestamp += timestampOffset;
isAligned = true;
}
continue;
}
if (chan != 0) {
LOG(DEBUG) << "chan: " << chan << ", timestamp: " << pktTimestamp << ", sz:" << payloadSz;
continue;
}
if ((word0 >> 28) & 0x04) {
if (underrun) *underrun = true;
LOG(DEBUG) << "UNDERRUN in TRX->USRP interface";
}
if (RSSI) *RSSI = (word0 >> 21) & 0x3f;
if (!isAligned) continue;
unsigned cursorStart = pktTimestamp - timeStart + dataStart;
while (cursorStart*2 > currDataSize) {
cursorStart -= currDataSize/2;
}
if (cursorStart*2 + payloadSz/2 > currDataSize) {
// need to circle around buffer
memcpy(data+cursorStart*2,tmpBuf+2,(currDataSize-cursorStart*2)*sizeof(short));
memcpy(data,tmpBuf+2+(currDataSize/2-cursorStart),payloadSz-(currDataSize-cursorStart*2)*sizeof(short));
}
else {
memcpy(data+cursorStart*2,tmpBuf+2,payloadSz);
}
if (pktTimestamp + payloadSz/2/sizeof(short) > timeEnd)
timeEnd = pktTimestamp+payloadSz/2/sizeof(short);
LOG(DEBUG) << "timeStart: " << timeStart << ", timeEnd: " << timeEnd << ", pktTimestamp: " << pktTimestamp;
}
}
// copy desired data to buf
unsigned bufStart = dataStart+(timestamp-timeStart);
if (bufStart + len < currDataSize/2) {
LOG(DEBUG) << "bufStart: " << bufStart;
memcpy(buf,data+bufStart*2,len*2*sizeof(short));
memset(data+bufStart*2,0,len*2*sizeof(short));
}
else {
LOG(DEBUG) << "len: " << len << ", currDataSize/2: " << currDataSize/2 << ", bufStart: " << bufStart;
unsigned firstLength = (currDataSize/2-bufStart);
LOG(DEBUG) << "firstLength: " << firstLength;
memcpy(buf,data+bufStart*2,firstLength*2*sizeof(short));
memset(data+bufStart*2,0,firstLength*2*sizeof(short));
memcpy(buf+firstLength*2,data,(len-firstLength)*2*sizeof(short));
memset(data,0,(len-firstLength)*2*sizeof(short));
}
dataStart = (bufStart + len) % (currDataSize/2);
timeStart = timestamp + len;
return len;
#else
if (loopbackBufferSize < 2) return 0;
int numSamples = 0;
struct timeval currTime;
gettimeofday(&currTime,NULL);
double timeElapsed = (currTime.tv_sec - lastReadTime.tv_sec)*1.0e6 +
(currTime.tv_usec - lastReadTime.tv_usec);
if (timeElapsed < samplePeriod) {return 0;}
int numSamplesToRead = (int) floor(timeElapsed/samplePeriod);
if (numSamplesToRead < len) return 0;
if (numSamplesToRead > len) numSamplesToRead = len;
if (numSamplesToRead > loopbackBufferSize/2) {
firstRead =false;
numSamplesToRead = loopbackBufferSize/2;
}
memcpy(buf,loopbackBuffer,sizeof(short)*2*numSamplesToRead);
loopbackBufferSize -= 2*numSamplesToRead;
memcpy(loopbackBuffer,loopbackBuffer+2*numSamplesToRead,
sizeof(short)*loopbackBufferSize);
numSamples = numSamplesToRead;
if (firstRead) {
int new_usec = lastReadTime.tv_usec + (int) round((double) numSamplesToRead * samplePeriod);
lastReadTime.tv_sec = lastReadTime.tv_sec + new_usec/1000000;
lastReadTime.tv_usec = new_usec % 1000000;
}
else {
gettimeofday(&lastReadTime,NULL);
firstRead = true;
}
samplesRead += numSamples;
return numSamples;
#endif
}
int USRPDevice::writeSamples(short *buf, int len, bool *underrun,
unsigned long long timestamp,
bool isControl)
{
writeLock.lock();
#ifndef SWLOOPBACK
if (!m_uTx) return 0;
static uint32_t outData[128*20];
for (int i = 0; i < len*2; i++) {
buf[i] = host_to_usrp_short(buf[i]);
}
int numWritten = 0;
unsigned isStart = 1;
unsigned RSSI = 0;
unsigned CHAN = (isControl) ? 0x01f : 0x00;
len = len*2*sizeof(short);
int numPkts = (int) ceil((float)len/(float)504);
unsigned isEnd = (numPkts < 2);
uint32_t *outPkt = outData;
int pktNum = 0;
while (numWritten < len) {
// pkt is pointer to start of a USB packet
uint32_t *pkt = outPkt + pktNum*128;
isEnd = (len - numWritten <= 504);
unsigned payloadLen = ((len - numWritten) < 504) ? (len-numWritten) : 504;
pkt[0] = (isStart << 12 | isEnd << 11 | (RSSI & 0x3f) << 5 | CHAN) << 16 | payloadLen;
pkt[1] = timestamp & 0x0ffffffffll;
memcpy(pkt+2,buf+(numWritten/sizeof(short)),payloadLen);
numWritten += payloadLen;
timestamp += payloadLen/2/sizeof(short);
isStart = 0;
pkt[0] = host_to_usrp_u32(pkt[0]);
pkt[1] = host_to_usrp_u32(pkt[1]);
pktNum++;
}
m_uTx->write((const void*) outPkt,sizeof(uint32_t)*128*numPkts,NULL);
samplesWritten += len/2/sizeof(short);
writeLock.unlock();
return len/2/sizeof(short);
#else
int retVal = len;
memcpy(loopbackBuffer+loopbackBufferSize,buf,sizeof(short)*2*len);
samplesWritten += retVal;
loopbackBufferSize += retVal*2;
return retVal;
#endif
}
bool USRPDevice::updateAlignment(TIMESTAMP timestamp)
{
#ifndef SWLOOPBACK
short data[] = {0x00,0x02,0x00,0x00};
uint32_t *wordPtr = (uint32_t *) data;
*wordPtr = host_to_usrp_u32(*wordPtr);
bool tmpUnderrun;
if (writeSamples((short *) data,1,&tmpUnderrun,timestamp & 0x0ffffffffll,true)) {
pingTimestamp = timestamp;
return true;
}
return false;
#else
return true;
#endif
}
#ifndef SWLOOPBACK
bool USRPDevice::setTxFreq(double wFreq)
{
usrp_tune_result result;
if (m_uTx->tune(txSubdevSpec.side, m_dbTx, wFreq, &result)) {
LOG(INFO) << "set TX: " << wFreq << std::endl
<< " baseband freq: " << result.baseband_freq << std::endl
<< " DDC freq: " << result.dxc_freq << std::endl
<< " residual freq: " << result.residual_freq;
return true;
}
else {
LOG(ALERT) << "set TX: " << wFreq << "failed" << std::endl
<< " baseband freq: " << result.baseband_freq << std::endl
<< " DDC freq: " << result.dxc_freq << std::endl
<< " residual freq: " << result.residual_freq;
return false;
}
}
bool USRPDevice::setRxFreq(double wFreq)
{
usrp_tune_result result;
if (m_uRx->tune(0, m_dbRx, wFreq, &result)) {
LOG(INFO) << "set RX: " << wFreq << std::endl
<< " baseband freq: " << result.baseband_freq << std::endl
<< " DDC freq: " << result.dxc_freq << std::endl
<< " residual freq: " << result.residual_freq;
return true;
}
else {
LOG(ALERT) << "set RX: " << wFreq << "failed" << std::endl
<< " baseband freq: " << result.baseband_freq << std::endl
<< " DDC freq: " << result.dxc_freq << std::endl
<< " residual freq: " << result.residual_freq;
return false;
}
}
#else
bool USRPDevice::setTxFreq(double wFreq) { return true;};
bool USRPDevice::setRxFreq(double wFreq) { return true;};
#endif
RadioDevice *RadioDevice::make(int sps, bool skipRx)
{
return new USRPDevice(sps, skipRx);
}