Files
openbts/Transceiver52M/laurent.m
Thomas Tsou d2193d4c18 Transceiver52M: Add 4 samples-per-symbol Laurent pulse shape
When 4 samples-per-symbol operation is selected, replace the
existing pulse approximation, which becomes inaccurate with
non-unit oversampling, with the primary pulse, C0, from the
Laurent linear pulse approximation.

Pierre Laurent, "Exact and Approximate Construction of Digital Phase
  Modulations by Superposition of Amplitude Modulated Pulses", IEEE
  Transactions of Communications, Vol. 34, No. 2, Feb 1986.

Octave pulse generation code for the first three pulses of the
linear approximation are included.

Signed-off-by: Thomas Tsou <tom@tsou.cc>

git-svn-id: http://wush.net/svn/range/software/public/openbts/trunk@6736 19bc5d8c-e614-43d4-8b26-e1612bc8e597
2013-10-17 06:18:26 +00:00

84 lines
2.1 KiB
Matlab

%
% Laurent decomposition of GMSK signals
% Generates C0, C1, and C2 pulse shapes
%
% Pierre Laurent, "Exact and Approximate Construction of Digital Phase
% Modulations by Superposition of Amplitude Modulated Pulses", IEEE
% Transactions of Communications, Vol. 34, No. 2, Feb 1986.
%
% Author: Thomas Tsou <tom@tsou.cc>
%
% Modulation parameters
oversamp = 16;
L = 3;
f = 270.83333e3;
T = 1/f;
h = 0.5;
BT = 0.30;
B = BT / T;
% Generate sampling points for L symbol periods
t = -(L*T/2):T/oversamp:(L*T/2);
t = t(1:end-1) + (T/oversamp/2);
% Generate Gaussian pulse
g = qfunc(2*pi*B*(t - T/2)/(log(2)^.5)) - qfunc(2*pi*B*(t + T/2)/(log(2)^.5));
g = g / sum(g) * pi/2;
g = [0 g];
% Integrate phase
q = 0;
for i = 1:size(g,2);
q(i) = sum(g(1:i));
end
% Compute two sided "generalized phase pulse" function
s = 0;
for i = 1:size(g,2);
s(i) = sin(q(i)) / sin(pi*h);
end
for i = (size(g,2) + 1):(2 * size(g,2) - 1);
s(i) = sin(pi*h - q(i - (size(g,2) - 1))) / sin(pi*h);
end
% Compute C0 pulse: valid for all L values
c0 = s(1:end-(oversamp*(L-1)));
for i = 1:L-1;
c0 = c0 .* s((1 + i*oversamp):end-(oversamp*(L - 1 - i)));
end
% Compute C1 pulse: valid for L = 3 only!
% C1 = S0 * S4 * S2
c1 = s(1:end-(oversamp*(4)));
c1 = c1 .* s((1 + 4*oversamp):end-(oversamp*(4 - 1 - 3)));
c1 = c1 .* s((1 + 2*oversamp):end-(oversamp*(4 - 1 - 1)));
% Compute C2 pulse: valid for L = 3 only!
% C2 = S0 * S1 * S5
c2 = s(1:end-(oversamp*(5)));
c2 = c2 .* s((1 + 1*oversamp):end-(oversamp*(5 - 1 - 0)));
c2 = c2 .* s((1 + 5*oversamp):end-(oversamp*(5 - 1 - 4)));
% Plot C0, C1, C2 Laurent pulse series
figure(1);
hold off;
plot((0:size(c0,2)-1)/oversamp - 2,c0, 'b');
hold on;
plot((0:size(c1,2)-1)/oversamp - 2,c1, 'r');
plot((0:size(c2,2)-1)/oversamp - 2,c2, 'g');
% Generate OpenBTS pulse
numSamples = size(c0,2);
centerPoint = (numSamples - 1)/2;
i = ((0:numSamples) - centerPoint) / oversamp;
xP = .96*exp(-1.1380*i.^2 - 0.527*i.^4);
xP = xP / max(xP) * max(c0);
% Plot C0 pulse compared to OpenBTS pulse
figure(2);
hold off;
plot((0:size(c0,2)-1)/oversamp, c0, 'b');
hold on;
plot((0:size(xP,2)-1)/oversamp, xP, 'r');