Compare commits

...

3 Commits

Author SHA1 Message Date
Eric
2ecd9f698f trcon<->l1 data if without sockets
direct call of UL rx receive data handler + sched check if ts is active
tx dir call stub for for tx thread queue.

Change-Id: I5911004db58742cf39b968fcf87bc1243f7a374a
2022-10-31 15:01:26 +01:00
Eric
70bd9415a2 trxcon/upper loop thread merge hack
Change-Id: Ia42f9df3050d7e6cc558f4d60e08955a0fa70b8a
2022-10-31 14:02:30 +01:00
Eric
2c12b30ace new ms
Change-Id: I7c5abe57182e7ef508cac4068c0b41f905d39fd6
2022-10-31 14:02:11 +01:00
48 changed files with 7695 additions and 76 deletions

9
.gitignore vendored
View File

@@ -6,6 +6,15 @@ Transceiver52M/osmo-trx-uhd
Transceiver52M/osmo-trx-usrp1
Transceiver52M/osmo-trx-lms
Transceiver52M/osmo-trx-ipc
Transceiver52M/osmo-trx-blade
Transceiver52M/osmo-trx-ipc2
Transceiver52M/osmo-trx-syncthing-blade
Transceiver52M/osmo-trx-syncthing-uhd
Transceiver52M/osmo-trx-syncthing-ipc
Transceiver52M/osmo-trx-ms-blade
Transceiver52M/osmo-trx-ms-uhd
Transceiver52M/osmo-trx-ms-ipc
.clang-format

View File

@@ -55,12 +55,15 @@ const BitVector GSM::gEdgeTrainingSequence[] = {
};
const BitVector GSM::gDummyBurst("0001111101101110110000010100100111000001001000100000001111100011100010111000101110001010111010010100011001100111001111010011111000100101111101010000");
const BitVector GSM::gDummyBurstTSC("01110001011100010111000101");
/* 3GPP TS 05.02, section 5.2.7 "Access burst (AB)", synch. sequence bits */
const BitVector GSM::gRACHSynchSequenceTS0("01001011011111111001100110101010001111000"); /* GSM, GMSK (default) */
const BitVector GSM::gRACHSynchSequenceTS1("01010100111110001000011000101111001001101"); /* EGPRS, 8-PSK */
const BitVector GSM::gRACHSynchSequenceTS2("11101111001001110101011000001101101110111"); /* EGPRS, GMSK */
const BitVector GSM::gSCHSynchSequence("1011100101100010000001000000111100101101010001010111011000011011");
// |-head-||---------midamble----------------------||--------------data----------------||t|
const BitVector GSM::gRACHBurst("0011101001001011011111111001100110101010001111000110111101111110000111001001010110011000");

View File

@@ -52,11 +52,16 @@ extern const BitVector gEdgeTrainingSequence[];
/** C0T0 filler burst, GSM 05.02, 5.2.6 */
extern const BitVector gDummyBurst;
extern const BitVector gDummyBurstTSC;
/** Random access burst synch. sequence */
extern const BitVector gRACHSynchSequenceTS0;
extern const BitVector gRACHSynchSequenceTS1;
extern const BitVector gRACHSynchSequenceTS2;
/** Synchronization burst sync sequence */
extern const BitVector gSCHSynchSequence;
/** Random access burst synch. sequence, GSM 05.02 5.2.7 */
extern const BitVector gRACHBurst;

View File

@@ -24,12 +24,13 @@ include $(top_srcdir)/Makefile.common
SUBDIRS = arch device
AM_CPPFLAGS = -Wall $(STD_DEFINES_AND_INCLUDES) -I${srcdir}/arch/common -I${srcdir}/device/common
AM_CXXFLAGS = -lpthread $(LIBOSMOCORE_CFLAGS) $(LIBOSMOCTRL_CFLAGS) $(LIBOSMOVTY_CFLAGS)
AM_CFLAGS = -lpthread $(LIBOSMOCORE_CFLAGS) $(LIBOSMOCTRL_CFLAGS) $(LIBOSMOVTY_CFLAGS)
AM_CXXFLAGS = -lpthread $(LIBOSMOCORE_CFLAGS) $(LIBOSMOCTRL_CFLAGS) $(LIBOSMOVTY_CFLAGS) -mcpu=cortex-a72 -mfloat-abi=hard -mfpu=neon-fp-armv8
AM_CFLAGS = -lpthread $(LIBOSMOCORE_CFLAGS) $(LIBOSMOCTRL_CFLAGS) $(LIBOSMOVTY_CFLAGS) -mcpu=cortex-a72 -mfloat-abi=hard -mfpu=neon-fp-armv8
noinst_LTLIBRARIES = libtransceiver_common.la
COMMON_SOURCES = \
l1if.cpp \
radioInterface.cpp \
radioVector.cpp \
radioClock.cpp \
@@ -40,7 +41,10 @@ COMMON_SOURCES = \
ChannelizerBase.cpp \
Channelizer.cpp \
Synthesis.cpp \
proto_trxd.c
proto_trxd.c \
sch.c \
grgsm_vitac/grgsm_vitac.cpp \
grgsm_vitac/viterbi_detector.cc
libtransceiver_common_la_SOURCES = \
$(COMMON_SOURCES) \
@@ -61,7 +65,9 @@ noinst_HEADERS = \
ChannelizerBase.h \
Channelizer.h \
Synthesis.h \
proto_trxd.h
proto_trxd.h \
grgsm_vitac/viterbi_detector.h \
grgsm_vitac/constants.h
COMMON_LDADD = \
libtransceiver_common.la \
@@ -70,6 +76,7 @@ COMMON_LDADD = \
$(COMMON_LA) \
$(FFTWF_LIBS) \
$(LIBOSMOCORE_LIBS) \
$(LIBOSMOCODING_LIBS) \
$(LIBOSMOCTRL_LIBS) \
$(LIBOSMOVTY_LIBS)
@@ -83,6 +90,24 @@ osmo_trx_uhd_LDADD = \
$(COMMON_LDADD) \
$(UHD_LIBS)
osmo_trx_uhd_CPPFLAGS = $(AM_CPPFLAGS) $(UHD_CFLAGS)
bin_PROGRAMS += osmo-trx-ms-uhd
osmo_trx_ms_uhd_SOURCES = ms/syncthing.cpp ms/ms_rx_lower.cpp ms/ms_rx_upper.cpp ms/ms_commandhandler.cpp
osmo_trx_ms_uhd_LDADD = \
$(builddir)/device/bladerf/libdevice.la \
$(COMMON_LDADD) \
$(UHD_LIBS) \
$(TRXCON_LA)
osmo_trx_ms_uhd_CPPFLAGS = $(AM_CPPFLAGS) $(UHD_CFLAGS) -DBUILDUHD
bin_PROGRAMS += osmo-trx-syncthing-uhd
osmo_trx_syncthing_uhd_SOURCES = ms/syncthing.cpp ms/ms_rx_lower.cpp ms/ms_rx_burst.cpp
osmo_trx_syncthing_uhd_LDADD = \
$(builddir)/device/bladerf/libdevice.la \
$(COMMON_LDADD) \
$(UHD_LIBS)
osmo_trx_syncthing_uhd_CPPFLAGS = $(AM_CPPFLAGS) $(UHD_CFLAGS) -DSYNCTHINGONLY -DBUILDUHD
#osmo_trx_syncthing_LDFLAGS = -fsanitize=address,undefined -shared-libsan
endif
if DEVICE_USRP1
@@ -105,6 +130,34 @@ osmo_trx_lms_LDADD = \
osmo_trx_lms_CPPFLAGS = $(AM_CPPFLAGS) $(LMS_CFLAGS)
endif
if DEVICE_BLADE
bin_PROGRAMS += osmo-trx-blade
osmo_trx_blade_SOURCES = osmo-trx.cpp
osmo_trx_blade_LDADD = \
$(builddir)/device/bladerf/libdevice.la \
$(COMMON_LDADD) \
$(BLADE_LIBS)
osmo_trx_blade_CPPFLAGS = $(AM_CPPFLAGS) $(LMS_CFLAGS)
bin_PROGRAMS += osmo-trx-ms-blade
osmo_trx_ms_blade_SOURCES = ms/syncthing.cpp ms/ms_rx_lower.cpp ms/ms_rx_upper.cpp ms/ms_commandhandler.cpp
osmo_trx_ms_blade_LDADD = \
$(builddir)/device/bladerf/libdevice.la \
$(COMMON_LDADD) \
$(BLADE_LIBS) \
$(TRXCON_LA)
osmo_trx_ms_blade_CPPFLAGS = $(AM_CPPFLAGS) $(BLADE_CFLAGS) -DBUILDBLADE
bin_PROGRAMS += osmo-trx-syncthing-blade
osmo_trx_syncthing_blade_SOURCES = ms/syncthing.cpp ms/ms_rx_lower.cpp ms/ms_rx_burst.cpp
osmo_trx_syncthing_blade_LDADD = \
$(builddir)/device/bladerf/libdevice.la \
$(COMMON_LDADD) \
$(BLADE_LIBS)
osmo_trx_syncthing_blade_CPPFLAGS = $(AM_CPPFLAGS) $(BLADE_CFLAGS) -DSYNCTHINGONLY -DBUILDBLADE -mcpu=cortex-a72 -mfloat-abi=hard -mfpu=neon-fp-armv8 -I../device/ipc
#osmo_trx_syncthing_LDFLAGS = -fsanitize=address,undefined -shared-libsan
endif
if DEVICE_IPC
bin_PROGRAMS += osmo-trx-ipc
osmo_trx_ipc_SOURCES = osmo-trx.cpp
@@ -112,5 +165,32 @@ osmo_trx_ipc_LDADD = \
$(builddir)/device/ipc/libdevice.la \
$(COMMON_LDADD)
osmo_trx_ipc_CPPFLAGS = $(AM_CPPFLAGS)
bin_PROGRAMS += osmo-trx-ipc2
osmo_trx_ipc2_SOURCES = osmo-trx.cpp
osmo_trx_ipc2_LDADD = \
$(builddir)/device/ipc2/libdevice.la \
$(COMMON_LDADD)
osmo_trx_ipc2_CPPFLAGS = $(AM_CPPFLAGS)
bin_PROGRAMS += osmo-trx-ms-ipc
osmo_trx_ms_ipc_SOURCES = ms/syncthing.cpp ms/ms_rx_lower.cpp ms/ms_rx_upper.cpp ms/ms_commandhandler.cpp
osmo_trx_ms_ipc_LDADD = \
$(COMMON_LDADD) \
$(TRXCON_LA)
osmo_trx_ms_ipc_CPPFLAGS = $(AM_CPPFLAGS) -DBUILDIPC -I./device/ipc2 -I../device/ipc2
bin_PROGRAMS += osmo-trx-syncthing-ipc
osmo_trx_syncthing_ipc_SOURCES = ms/syncthing.cpp ms/ms_rx_lower.cpp ms/ms_rx_burst.cpp
osmo_trx_syncthing_ipc_LDADD = $(COMMON_LDADD)
osmo_trx_syncthing_ipc_CPPFLAGS = $(AM_CPPFLAGS) -DSYNCTHINGONLY -DBUILDIPC -I./device/ipc2 -I../device/ipc2
endif
noinst_HEADERS += \
ms/syncthing.h \
ms/bladerf_specific.h \
ms/uhd_specific.h \
ms/ms_rx_upper.h \
itrq.h
# -fsanitize=address,undefined -shared-libsan -O0
#

View File

@@ -32,7 +32,7 @@ extern "C" {
#define M_PI 3.14159265358979323846264338327f
#endif
#define MAX_OUTPUT_LEN 4096
#define MAX_OUTPUT_LEN 4096 * 4
using namespace std;

View File

@@ -3,7 +3,7 @@ include $(top_srcdir)/Makefile.common
SUBDIRS = common
if DEVICE_IPC
SUBDIRS += ipc
SUBDIRS += ipc ipc2
endif
if DEVICE_USRP1
@@ -17,3 +17,7 @@ endif
if DEVICE_LMS
SUBDIRS += lms
endif
if DEVICE_BLADE
SUBDIRS += bladerf
endif

View File

@@ -0,0 +1,11 @@
include $(top_srcdir)/Makefile.common
AM_CPPFLAGS = -Wall $(STD_DEFINES_AND_INCLUDES) -I${srcdir}/../common
AM_CXXFLAGS = -lpthread $(LIBOSMOCORE_CFLAGS) $(LIBOSMOVTY_CFLAGS) $(BLADE_CFLAGS)
noinst_HEADERS = bladerf.h
noinst_LTLIBRARIES = libdevice.la
libdevice_la_SOURCES = bladerf.cpp
libdevice_la_LIBADD = $(top_builddir)/Transceiver52M/device/common/libdevice_common.la

View File

@@ -0,0 +1,777 @@
/*
* Copyright 2022 sysmocom - s.f.m.c. GmbH
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* SPDX-License-Identifier: AGPL-3.0+
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* See the COPYING file in the main directory for details.
*/
#include <map>
#include <libbladeRF.h>
#include "radioDevice.h"
#include "bladerf.h"
#include "Threads.h"
#include "Logger.h"
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
extern "C" {
#include <osmocom/core/utils.h>
#include <osmocom/gsm/gsm_utils.h>
#include <osmocom/vty/cpu_sched_vty.h>
}
#define USRP_TX_AMPL 0.3
#define UMTRX_TX_AMPL 0.7
#define LIMESDR_TX_AMPL 0.3
#define SAMPLE_BUF_SZ (1 << 20)
/*
* UHD timeout value on streaming (re)start
*
* Allow some time for streaming to commence after the start command is issued,
* but consider a wait beyond one second to be a definite error condition.
*/
#define UHD_RESTART_TIMEOUT 1.0
/*
* UmTRX specific settings
*/
#define UMTRX_VGA1_DEF -18
/*
* USRP version dependent device timings
*/
#define B2XX_TIMING_1SPS 1.7153e-4
#define B2XX_TIMING_4SPS 1.1696e-4
#define B2XX_TIMING_4_4SPS 6.18462e-5
#define B2XX_TIMING_MCBTS 7e-5
#define CHKRET() { \
if(status !=0) \
fprintf(stderr, "%s:%s:%d %s\n", __FILE__,__FUNCTION__, __LINE__, bladerf_strerror(status)); \
}
/*
* Tx / Rx sample offset values. In a perfect world, there is no group delay
* though analog components, and behaviour through digital filters exactly
* matches calculated values. In reality, there are unaccounted factors,
* which are captured in these empirically measured (using a loopback test)
* timing correction values.
*
* Notes:
* USRP1 with timestamps is not supported by UHD.
*/
/* Device Type, Tx-SPS, Rx-SPS */
typedef std::tuple<blade_dev_type, int, int> dev_key;
/* Device parameter descriptor */
struct dev_desc {
unsigned channels;
double mcr;
double rate;
double offset;
std::string str;
};
static const std::map<dev_key, dev_desc> dev_param_map {
{ std::make_tuple(blade_dev_type::BLADE2, 1, 1), { 1, 26e6, GSMRATE, B2XX_TIMING_1SPS, "B200 1 SPS" } },
{ std::make_tuple(blade_dev_type::BLADE2, 4, 1), { 1, 26e6, GSMRATE, B2XX_TIMING_4SPS, "B200 4/1 Tx/Rx SPS" } },
{ std::make_tuple(blade_dev_type::BLADE2, 4, 4), { 1, 26e6, GSMRATE, B2XX_TIMING_4_4SPS, "B200 4 SPS" } },
};
typedef std::tuple<blade_dev_type, enum gsm_band> dev_band_key;
typedef std::map<dev_band_key, dev_band_desc>::const_iterator dev_band_map_it;
static const std::map<dev_band_key, dev_band_desc> dev_band_nom_power_param_map {
{ std::make_tuple(blade_dev_type::BLADE2, GSM_BAND_850), { 89.75, 13.3, -7.5 } },
{ std::make_tuple(blade_dev_type::BLADE2, GSM_BAND_900), { 89.75, 13.3, -7.5 } },
{ std::make_tuple(blade_dev_type::BLADE2, GSM_BAND_1800), { 89.75, 7.5, -11.0 } },
{ std::make_tuple(blade_dev_type::BLADE2, GSM_BAND_1900), { 89.75, 7.7, -11.0 } },
};
/* So far measurements done for B210 show really close to linear relationship
* between gain and real output power, so we simply adjust the measured offset
*/
static double TxGain2TxPower(const dev_band_desc &desc, double tx_gain_db)
{
return desc.nom_out_tx_power - (desc.nom_uhd_tx_gain - tx_gain_db);
}
static double TxPower2TxGain(const dev_band_desc &desc, double tx_power_dbm)
{
return desc.nom_uhd_tx_gain - (desc.nom_out_tx_power - tx_power_dbm);
}
blade_device::blade_device(size_t tx_sps, size_t rx_sps,
InterfaceType iface, size_t chan_num, double lo_offset,
const std::vector<std::string>& tx_paths,
const std::vector<std::string>& rx_paths)
: RadioDevice(tx_sps, rx_sps, iface, chan_num, lo_offset, tx_paths, rx_paths),
dev(nullptr), rx_gain_min(0.0), rx_gain_max(0.0),
band_ass_curr_sess(false), band((enum gsm_band)0), tx_spp(0),
rx_spp(0), started(false), aligned(false),
drop_cnt(0), prev_ts(0), ts_initial(0), ts_offset(0), async_event_thrd(NULL)
{
}
blade_device::~blade_device()
{
if(dev) {
bladerf_enable_module(dev, BLADERF_CHANNEL_RX(0), false);
bladerf_enable_module(dev, BLADERF_CHANNEL_TX(0), false);
}
stop();
for (size_t i = 0; i < rx_buffers.size(); i++)
delete rx_buffers[i];
}
void blade_device::assign_band_desc(enum gsm_band req_band)
{
dev_band_map_it it;
it = dev_band_nom_power_param_map.find(dev_band_key(dev_type, req_band));
if (it == dev_band_nom_power_param_map.end()) {
dev_desc desc = dev_param_map.at(dev_key(dev_type, tx_sps, rx_sps));
LOGC(DDEV, ERROR) << "No Power parameters exist for device "
<< desc.str << " on band " << gsm_band_name(req_band)
<< ", using B210 ones as fallback";
it = dev_band_nom_power_param_map.find(dev_band_key(blade_dev_type::BLADE2, req_band));
}
OSMO_ASSERT(it != dev_band_nom_power_param_map.end())
band_desc = it->second;
}
bool blade_device::set_band(enum gsm_band req_band)
{
if (band_ass_curr_sess && req_band != band) {
LOGC(DDEV, ALERT) << "Requesting band " << gsm_band_name(req_band)
<< " different from previous band " << gsm_band_name(band);
return false;
}
if (req_band != band) {
band = req_band;
assign_band_desc(band);
}
band_ass_curr_sess = true;
return true;
}
void blade_device::get_dev_band_desc(dev_band_desc& desc)
{
if (band == 0) {
LOGC(DDEV, ERROR) << "Power parameters requested before Tx Frequency was set! Providing band 900 by default...";
assign_band_desc(GSM_BAND_900);
}
desc = band_desc;
}
void blade_device::init_gains()
{
double tx_gain_min, tx_gain_max;
int status;
const struct bladerf_range* r;
bladerf_get_gain_range(dev, BLADERF_RX, &r);
rx_gain_min = r->min;
rx_gain_max = r->max;
LOGC(DDEV, INFO) << "Supported Rx gain range [" << rx_gain_min << "; " << rx_gain_max << "]";
for (size_t i = 0; i < rx_gains.size(); i++) {
double gain = (rx_gain_min + rx_gain_max) / 2;
status = bladerf_set_gain_mode(dev, BLADERF_CHANNEL_RX(i), BLADERF_GAIN_MGC );
CHKRET()
bladerf_gain_mode m;
bladerf_get_gain_mode(dev, BLADERF_CHANNEL_RX(i), &m);
LOGC(DDEV, INFO) << (m == BLADERF_GAIN_MANUAL ? "gain manual" : "gain AUTO") ;
status = bladerf_set_gain(dev, BLADERF_CHANNEL_RX(i), 0);//gain);
CHKRET()
int actual_gain;
status = bladerf_get_gain(dev, BLADERF_CHANNEL_RX(i), &actual_gain);
CHKRET()
LOGC(DDEV, INFO) << "Default setting Rx gain for channel " << i << " to " << gain << " scale " << r->scale << " actual " << actual_gain;
rx_gains[i] = actual_gain;
status = bladerf_set_gain(dev, BLADERF_CHANNEL_RX(i), 0);//gain);
CHKRET()
status = bladerf_get_gain(dev, BLADERF_CHANNEL_RX(i), &actual_gain);
CHKRET()
LOGC(DDEV, INFO) << "Default setting Rx gain for channel " << i << " to " << gain << " scale " << r->scale << " actual " << actual_gain;
rx_gains[i] = actual_gain;
}
status = bladerf_get_gain_range(dev, BLADERF_TX, &r);
CHKRET()
tx_gain_min = r->min;
tx_gain_max = r->max;
LOGC(DDEV, INFO) << "Supported Tx gain range [" << tx_gain_min << "; " << tx_gain_max << "]";
for (size_t i = 0; i < tx_gains.size(); i++) {
double gain = (tx_gain_min + tx_gain_max) / 2;
status = bladerf_set_gain(dev, BLADERF_CHANNEL_TX(i), 30);//gain);
CHKRET()
int actual_gain;
status = bladerf_get_gain(dev, BLADERF_CHANNEL_TX(i), &actual_gain);
CHKRET()
LOGC(DDEV, INFO) << "Default setting Tx gain for channel " << i << " to " << gain << " scale " << r->scale << " actual " << actual_gain;
tx_gains[i] = actual_gain;
}
return;
}
void blade_device::set_rates()
{
//dev_desc desc = dev_param_map.at(dev_key(dev_type, tx_sps, rx_sps));
struct bladerf_rational_rate rate = {0, static_cast<uint64_t>((1625e3 * 4)), 6}, actual;
auto status = bladerf_set_rational_sample_rate(dev, BLADERF_CHANNEL_RX(0), &rate, &actual);
CHKRET()
status = bladerf_set_rational_sample_rate(dev, BLADERF_CHANNEL_TX(0), &rate, &actual);
CHKRET()
tx_rate = rx_rate = (double)rate.num/(double)rate.den;
LOGC(DDEV, INFO) << "Rates set to" << tx_rate << " / " << rx_rate;
bladerf_set_bandwidth(dev, BLADERF_CHANNEL_RX(0), (bladerf_bandwidth)2e6, (bladerf_bandwidth*)NULL);
bladerf_set_bandwidth(dev, BLADERF_CHANNEL_TX(0), (bladerf_bandwidth)2e6, (bladerf_bandwidth*)NULL);
ts_offset = 60;//static_cast<TIMESTAMP>(desc.offset * rx_rate);
//LOGC(DDEV, INFO) << "Rates configured for " << desc.str;
}
double blade_device::setRxGain(double db, size_t chan)
{
if (chan >= rx_gains.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel " << chan;
return 0.0f;
}
bladerf_set_gain(dev, BLADERF_CHANNEL_RX(chan), 30);//db);
int actual_gain;
bladerf_get_gain(dev, BLADERF_CHANNEL_RX(chan), &actual_gain);
rx_gains[chan] = actual_gain;
LOGC(DDEV, INFO) << "Set RX gain to " << rx_gains[chan] << "dB (asked for " << db << "dB)";
return rx_gains[chan];
}
double blade_device::getRxGain(size_t chan)
{
if (chan >= rx_gains.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel " << chan;
return 0.0f;
}
return rx_gains[chan];
}
double blade_device::rssiOffset(size_t chan)
{
double rssiOffset;
dev_band_desc desc;
if (chan >= rx_gains.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel " << chan;
return 0.0f;
}
get_dev_band_desc(desc);
rssiOffset = rx_gains[chan] + desc.rxgain2rssioffset_rel;
return rssiOffset;
}
double blade_device::setPowerAttenuation(int atten, size_t chan) {
double tx_power, db;
dev_band_desc desc;
if (chan >= tx_gains.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel" << chan;
return 0.0f;
}
get_dev_band_desc(desc);
tx_power = desc.nom_out_tx_power - atten;
db = TxPower2TxGain(desc, tx_power);
bladerf_set_gain(dev, BLADERF_CHANNEL_TX(chan), 30);//db);
int actual_gain;
bladerf_get_gain(dev, BLADERF_CHANNEL_RX(chan), &actual_gain);
tx_gains[chan] = actual_gain;
LOGC(DDEV, INFO) << "Set TX gain to " << tx_gains[chan] << "dB, ~"
<< TxGain2TxPower(desc, tx_gains[chan]) << " dBm "
<< "(asked for " << db << " dB, ~" << tx_power << " dBm)";
return desc.nom_out_tx_power - TxGain2TxPower(desc, tx_gains[chan]);
}
double blade_device::getPowerAttenuation(size_t chan) {
dev_band_desc desc;
if (chan >= tx_gains.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel " << chan;
return 0.0f;
}
get_dev_band_desc(desc);
return desc.nom_out_tx_power - TxGain2TxPower(desc, tx_gains[chan]);
}
int blade_device::getNominalTxPower(size_t chan)
{
dev_band_desc desc;
get_dev_band_desc(desc);
return desc.nom_out_tx_power;
}
int blade_device::open(const std::string &args, int ref, bool swap_channels)
{
bladerf_log_set_verbosity(BLADERF_LOG_LEVEL_VERBOSE);
bladerf_set_usb_reset_on_open(true);
auto success = bladerf_open(&dev, args.c_str());
if(success != 0) {
struct bladerf_devinfo* info;
auto num_devs = bladerf_get_device_list(&info);
LOGC(DDEV, ALERT) << "No bladerf devices found with identifier '" << args << "'";
if(num_devs) {
for(int i=0; i < num_devs; i++)
LOGC(DDEV, ALERT) << "Found device:" << info[i].product << " serial " << info[i].serial;
}
return -1;
}
if(strcmp("bladerf2", bladerf_get_board_name(dev))) {
LOGC(DDEV, ALERT) << "Only BladeRF2 supported! found:" << bladerf_get_board_name(dev) ;
return -1;
}
dev_type = blade_dev_type::BLADE2;
tx_window = TX_WINDOW_FIXED;
struct bladerf_devinfo info;
bladerf_get_devinfo(dev, &info);
// Use the first found device
LOGC(DDEV, INFO) << "Using discovered bladerf device " << info.serial;
tx_freqs.resize(chans);
rx_freqs.resize(chans);
tx_gains.resize(chans);
rx_gains.resize(chans);
rx_buffers.resize(chans);
switch (ref) {
case REF_INTERNAL:
case REF_EXTERNAL:
break;
default:
LOGC(DDEV, ALERT) << "Invalid reference type";
return -1;
}
if(ref == REF_EXTERNAL) {
bool is_locked;
int status = bladerf_set_pll_enable(dev, true);
CHKRET()
status = bladerf_set_pll_refclk(dev, 10000000);
CHKRET()
for(int i=0; i < 20; i++) {
usleep(50*1000);
status = bladerf_get_pll_lock_state(dev, &is_locked);
CHKRET()
if(is_locked)
break;
}
if(!is_locked) {
LOGC(DDEV, ALERT) << "unable to lock refclk!";
return -1;
}
}
LOGC(DDEV, INFO) << "Selected clock source is " << ((ref == REF_INTERNAL) ? "internal" : "external 10Mhz");
set_rates();
/*
1ts = 3/5200s
1024*2 = small gap(~180us) every 9.23ms = every 16 ts? -> every 2 frames
1024*1 = large gap(~627us) every 9.23ms = every 16 ts? -> every 2 frames
rif convertbuffer = 625*4 = 2500 -> 4 ts
rif rxtxbuf = 4 * segment(625*4) = 10000 -> 16 ts
*/
const unsigned int num_buffers = 256;
const unsigned int buffer_size = 1024*4; /* Must be a multiple of 1024 */
const unsigned int num_transfers = 32;
const unsigned int timeout_ms = 3500;
bladerf_sync_config(dev, BLADERF_RX_X1, BLADERF_FORMAT_SC16_Q11_META,
num_buffers, buffer_size, num_transfers,
timeout_ms);
bladerf_sync_config(dev, BLADERF_TX_X1, BLADERF_FORMAT_SC16_Q11_META,
num_buffers, buffer_size, num_transfers,
timeout_ms);
/* Number of samples per over-the-wire packet */
tx_spp = rx_spp = buffer_size;
// Create receive buffer
size_t buf_len = SAMPLE_BUF_SZ / sizeof(uint32_t);
for (size_t i = 0; i < rx_buffers.size(); i++)
rx_buffers[i] = new smpl_buf(buf_len);
// Create vector buffer
pkt_bufs = std::vector<std::vector<short> >(chans, std::vector<short>(2 * rx_spp));
for (size_t i = 0; i < pkt_bufs.size(); i++)
pkt_ptrs.push_back(&pkt_bufs[i].front());
// Initialize and shadow gain values
init_gains();
return NORMAL;
}
bool blade_device::restart()
{
/* Allow 100 ms delay to align multi-channel streams */
double delay = 0.2;
int status;
status = bladerf_enable_module(dev, BLADERF_CHANNEL_RX(0), true);
CHKRET()
status = bladerf_enable_module(dev, BLADERF_CHANNEL_TX(0), true);
CHKRET()
bladerf_timestamp now;
status = bladerf_get_timestamp(dev, BLADERF_RX, &now);
ts_initial = now + rx_rate * delay;
LOGC(DDEV, INFO) << "Initial timestamp " << ts_initial << std::endl;
return true;
}
bool blade_device::start()
{
LOGC(DDEV, INFO) << "Starting USRP...";
if (started) {
LOGC(DDEV, ERROR) << "Device already started";
return false;
}
// Start streaming
if (!restart())
return false;
started = true;
return true;
}
bool blade_device::stop()
{
if (!started)
return false;
/* reset internal buffer timestamps */
for (size_t i = 0; i < rx_buffers.size(); i++)
rx_buffers[i]->reset();
band_ass_curr_sess = false;
started = false;
return true;
}
int blade_device::readSamples(std::vector<short *> &bufs, int len, bool *overrun,
TIMESTAMP timestamp, bool *underrun)
{
ssize_t rc;
uint64_t ts;
if (bufs.size() != chans) {
LOGC(DDEV, ALERT) << "Invalid channel combination " << bufs.size();
return -1;
}
*overrun = false;
*underrun = false;
// Shift read time with respect to transmit clock
timestamp += ts_offset;
ts = timestamp;
LOGC(DDEV, DEBUG) << "Requested timestamp = " << ts;
// Check that timestamp is valid
rc = rx_buffers[0]->avail_smpls(timestamp);
if (rc < 0) {
LOGC(DDEV, ERROR) << rx_buffers[0]->str_code(rc);
LOGC(DDEV, ERROR) << rx_buffers[0]->str_status(timestamp);
return 0;
}
struct bladerf_metadata meta = {};
meta.timestamp = ts;
//static bool first_rx = true;
// meta.timestamp = (first_rx) ? ts : 0;
// meta.flags = (!first_rx) ? 0:BLADERF_META_FLAG_RX_NOW;
// if(first_rx)
// first_rx = false;
// Receive samples from the usrp until we have enough
while (rx_buffers[0]->avail_smpls(timestamp) < len) {
thread_enable_cancel(false);
int status = bladerf_sync_rx(dev, pkt_ptrs[0], len, &meta, 200U);
thread_enable_cancel(true);
if(status != 0)
std::cerr << "RX fucked: " << bladerf_strerror(status);
if(meta.flags & BLADERF_META_STATUS_OVERRUN )
std::cerr << "RX fucked OVER: " << bladerf_strerror(status);
size_t num_smpls = meta.actual_count;
; ts = meta.timestamp;
for (size_t i = 0; i < rx_buffers.size(); i++) {
rc = rx_buffers[i]->write((short *) &pkt_bufs[i].front(),
num_smpls,
ts);
// Continue on local overrun, exit on other errors
if ((rc < 0)) {
LOGC(DDEV, ERROR) << rx_buffers[i]->str_code(rc);
LOGC(DDEV, ERROR) << rx_buffers[i]->str_status(timestamp);
if (rc != smpl_buf::ERROR_OVERFLOW)
return 0;
}
}
meta = {};
meta.timestamp = ts+num_smpls;
}
// We have enough samples
for (size_t i = 0; i < rx_buffers.size(); i++) {
rc = rx_buffers[i]->read(bufs[i], len, timestamp);
if ((rc < 0) || (rc != len)) {
LOGC(DDEV, ERROR) << rx_buffers[i]->str_code(rc);
LOGC(DDEV, ERROR) << rx_buffers[i]->str_status(timestamp);
return 0;
}
}
return len;
}
int blade_device::writeSamples(std::vector<short *> &bufs, int len, bool *underrun,
unsigned long long timestamp)
{
*underrun = false;
static bool first_tx = true;
struct bladerf_metadata meta = {};
if(first_tx) {
meta.timestamp = timestamp;
meta.flags = BLADERF_META_FLAG_TX_BURST_START;
first_tx = false;
}
thread_enable_cancel(false);
int status = bladerf_sync_tx(dev, (const void*)bufs[0], len, &meta, 200U);
//size_t num_smpls = tx_stream->send(bufs, len, metadata);
thread_enable_cancel(true);
if(status != 0)
std::cerr << "TX fucked: " << bladerf_strerror(status);
// LOGCHAN(0, DDEV, INFO) << "tx " << timestamp << " " << len << " t+l: "<< timestamp+len << std::endl;
return len;
}
bool blade_device::updateAlignment(TIMESTAMP timestamp)
{
return true;
}
bool blade_device::set_freq(double freq, size_t chan, bool tx)
{
if (tx) {
bladerf_set_frequency(dev, BLADERF_CHANNEL_TX(chan), freq);
bladerf_frequency f;
bladerf_get_frequency(dev,BLADERF_CHANNEL_TX(chan), &f);
tx_freqs[chan] = f;
} else {
bladerf_set_frequency(dev, BLADERF_CHANNEL_RX(chan), freq);
bladerf_frequency f;
bladerf_get_frequency(dev,BLADERF_CHANNEL_RX(chan), &f);
rx_freqs[chan] = f;
}
LOGCHAN(chan, DDEV, INFO) << "set_freq(" << freq << ", " << (tx ? "TX" : "RX") << "): " << std::endl;
return true;
}
bool blade_device::setTxFreq(double wFreq, size_t chan)
{
uint16_t req_arfcn;
enum gsm_band req_band;
if (chan >= tx_freqs.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel " << chan;
return false;
}
ScopedLock lock(tune_lock);
req_arfcn = gsm_freq102arfcn(wFreq / 1000 / 100 , 0);
if (req_arfcn == 0xffff) {
LOGCHAN(chan, DDEV, ALERT) << "Unknown ARFCN for Tx Frequency " << wFreq / 1000 << " kHz";
return false;
}
if (gsm_arfcn2band_rc(req_arfcn, &req_band) < 0) {
LOGCHAN(chan, DDEV, ALERT) << "Unknown GSM band for Tx Frequency " << wFreq
<< " Hz (ARFCN " << req_arfcn << " )";
return false;
}
if (!set_band(req_band))
return false;
if (!set_freq(wFreq, chan, true))
return false;
return true;
}
bool blade_device::setRxFreq(double wFreq, size_t chan)
{
uint16_t req_arfcn;
enum gsm_band req_band;
if (chan >= rx_freqs.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel " << chan;
return false;
}
ScopedLock lock(tune_lock);
req_arfcn = gsm_freq102arfcn(wFreq / 1000 / 100, 1);
if (req_arfcn == 0xffff) {
LOGCHAN(chan, DDEV, ALERT) << "Unknown ARFCN for Rx Frequency " << wFreq / 1000 << " kHz";
return false;
}
if (gsm_arfcn2band_rc(req_arfcn, &req_band) < 0) {
LOGCHAN(chan, DDEV, ALERT) << "Unknown GSM band for Rx Frequency " << wFreq
<< " Hz (ARFCN " << req_arfcn << " )";
return false;
}
if (!set_band(req_band))
return false;
return set_freq(wFreq, chan, false);
}
double blade_device::getTxFreq(size_t chan)
{
if (chan >= tx_freqs.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel " << chan;
return 0.0;
}
return tx_freqs[chan];
}
double blade_device::getRxFreq(size_t chan)
{
if (chan >= rx_freqs.size()) {
LOGC(DDEV, ALERT) << "Requested non-existent channel " << chan;
return 0.0;
}
return rx_freqs[chan];
}
bool blade_device::requiresRadioAlign()
{
return false;
}
GSM::Time blade_device::minLatency() {
/* Empirical data from a handful of
relatively recent machines shows that the B100 will underrun when
the transmit threshold is reduced to a time of 6 and a half frames,
so we set a minimum 7 frame threshold. */
return GSM::Time(6,7);
}
TIMESTAMP blade_device::initialWriteTimestamp()
{
return ts_initial;
}
TIMESTAMP blade_device::initialReadTimestamp()
{
return ts_initial;
}
double blade_device::fullScaleInputValue()
{
return (double) 2047;
}
double blade_device::fullScaleOutputValue()
{
return (double) 2047;
}
#ifndef IPCMAGIC
RadioDevice *RadioDevice::make(size_t tx_sps, size_t rx_sps,
InterfaceType iface, size_t chans, double lo_offset,
const std::vector<std::string>& tx_paths,
const std::vector<std::string>& rx_paths)
{
return new blade_device(tx_sps, rx_sps, iface, chans, lo_offset, tx_paths, rx_paths);
}
#endif

View File

@@ -0,0 +1,171 @@
/*
* Copyright 2022 sysmocom - s.f.m.c. GmbH
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* SPDX-License-Identifier: AGPL-3.0+
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* See the COPYING file in the main directory for details.
*/
#pragma once
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "radioDevice.h"
#include "smpl_buf.h"
extern "C" {
#include <osmocom/gsm/gsm_utils.h>
}
#include <bladerf.h>
enum class blade_dev_type {
BLADE1,
BLADE2
};
struct dev_band_desc {
/* Maximum UHD Tx Gain which can be set/used without distorting the
output signal, and the resulting real output power measured when that
gain is used. Correct measured values only provided for B210 so far. */
double nom_uhd_tx_gain; /* dB */
double nom_out_tx_power; /* dBm */
/* Factor used to infer base real RSSI offset on the Rx path based on current
configured RxGain. The resulting rssiOffset is added to the per burst
calculated energy in upper layers. These values were empirically
found and may change based on multiple factors, see OS#4468.
rssiOffset = rxGain + rxgain2rssioffset_rel;
*/
double rxgain2rssioffset_rel; /* dB */
};
class blade_device : public RadioDevice {
public:
blade_device(size_t tx_sps, size_t rx_sps, InterfaceType type,
size_t chan_num, double offset,
const std::vector<std::string>& tx_paths,
const std::vector<std::string>& rx_paths);
~blade_device();
int open(const std::string &args, int ref, bool swap_channels);
bool start();
bool stop();
bool restart();
enum TxWindowType getWindowType() { return tx_window; }
int readSamples(std::vector<short *> &bufs, int len, bool *overrun,
TIMESTAMP timestamp, bool *underrun);
int writeSamples(std::vector<short *> &bufs, int len, bool *underrun,
TIMESTAMP timestamp);
bool updateAlignment(TIMESTAMP timestamp);
bool setTxFreq(double wFreq, size_t chan);
bool setRxFreq(double wFreq, size_t chan);
TIMESTAMP initialWriteTimestamp();
TIMESTAMP initialReadTimestamp();
double fullScaleInputValue();
double fullScaleOutputValue();
double setRxGain(double db, size_t chan);
double getRxGain(size_t chan);
double maxRxGain(void) { return rx_gain_max; }
double minRxGain(void) { return rx_gain_min; }
double rssiOffset(size_t chan);
double setPowerAttenuation(int atten, size_t chan);
double getPowerAttenuation(size_t chan = 0);
int getNominalTxPower(size_t chan = 0);
double getTxFreq(size_t chan);
double getRxFreq(size_t chan);
double getRxFreq();
bool setRxAntenna(const std::string &ant, size_t chan) { return {};};
std::string getRxAntenna(size_t chan) { return {};};
bool setTxAntenna(const std::string &ant, size_t chan) { return {};};
std::string getTxAntenna(size_t chan) { return {};};
bool requiresRadioAlign();
GSM::Time minLatency();
inline double getSampleRate() { return tx_rate; }
/** Receive and process asynchronous message
@return true if message received or false on timeout or error
*/
bool recv_async_msg();
enum err_code {
ERROR_TIMING = -1,
ERROR_TIMEOUT = -2,
ERROR_UNRECOVERABLE = -3,
ERROR_UNHANDLED = -4,
};
protected:
struct bladerf* dev;
void* usrp_dev;
enum TxWindowType tx_window;
enum blade_dev_type dev_type;
double tx_rate, rx_rate;
double rx_gain_min, rx_gain_max;
std::vector<double> tx_gains, rx_gains;
std::vector<double> tx_freqs, rx_freqs;
bool band_ass_curr_sess; /* true if "band" was set after last POWEROFF */
enum gsm_band band;
struct dev_band_desc band_desc;
size_t tx_spp, rx_spp;
bool started;
bool aligned;
size_t drop_cnt;
uint64_t prev_ts;
TIMESTAMP ts_initial, ts_offset;
std::vector<smpl_buf *> rx_buffers;
/* Sample buffers used to receive samples: */
std::vector<std::vector<short> > pkt_bufs;
/* Used to call UHD API: Buffer pointer of each elem in pkt_ptrs will
point to corresponding buffer of vector pkt_bufs. */
std::vector<short *> pkt_ptrs;
void init_gains();
void set_channels(bool swap);
void set_rates();
bool flush_recv(size_t num_pkts);
bool set_freq(double freq, size_t chan, bool tx);
void get_dev_band_desc(dev_band_desc& desc);
bool set_band(enum gsm_band req_band);
void assign_band_desc(enum gsm_band req_band);
Thread *async_event_thrd;
Mutex tune_lock;
};

View File

@@ -0,0 +1,314 @@
/*
* Copyright 2020 sysmocom - s.f.m.c. GmbH <info@sysmocom.de>
* Author: Pau Espin Pedrol <pespin@sysmocom.de>
*
* SPDX-License-Identifier: AGPL-3.0+
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* See the COPYING file in the main directory for details.
*/
#include <sys/time.h>
#include <osmocom/core/timer_compat.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "Logger.h"
#include "Threads.h"
#include "IPCDevice.h"
#include "smpl_buf.h"
#define SAMPLE_BUF_SZ (1 << 20)
static const auto ONE_BIT_DURATION ((12./5200.)/(156.25*4.));
static const auto ONE_SAMPLE_DURATION_US ((ONE_BIT_DURATION/4.)*1000*1000);
using namespace std;
IPCDevice2::IPCDevice2(size_t tx_sps, size_t rx_sps, InterfaceType iface, size_t chan_num, double lo_offset,
const std::vector<std::string> &tx_paths, const std::vector<std::string> &rx_paths)
: RadioDevice(tx_sps, rx_sps, iface, chan_num, lo_offset, tx_paths, rx_paths), rx_buffers(chans),
started(false), tx_gains(chans), rx_gains(chans)
{
LOGC(DDEV, INFO) << "creating IPC device...";
if (!(tx_sps == 4) || !(rx_sps == 4)) {
LOGC(DDEV, FATAL) << "IPC shm if create failed!";
exit(0);
}
/* Set up per-channel Rx timestamp based Ring buffers */
for (size_t i = 0; i < rx_buffers.size(); i++)
rx_buffers[i] = new smpl_buf(SAMPLE_BUF_SZ / sizeof(uint32_t));
if (!m.create()) {
LOGC(DDEV, FATAL) << "IPC shm if create failed!";
exit(0);
}
}
IPCDevice2::~IPCDevice2()
{
LOGC(DDEV, INFO) << "Closing IPC device";
/* disable all channels */
for (size_t i = 0; i < rx_buffers.size(); i++)
delete rx_buffers[i];
}
int IPCDevice2::open(const std::string &args, int ref, bool swap_channels)
{
std::string k, v;
/* configure antennas */
if (!set_antennas()) {
LOGC(DDEV, FATAL) << "IPC antenna setting failed";
goto out_close;
}
return iface == MULTI_ARFCN ? MULTI_ARFCN : NORMAL;
out_close:
LOGC(DDEV, FATAL) << "Error in IPC open, closing";
return -1;
}
bool IPCDevice2::start()
{
LOGC(DDEV, INFO) << "starting IPC...";
if (started) {
LOGC(DDEV, ERR) << "Device already started";
return true;
}
int max_bufs_to_flush = 120;
flush_recv(max_bufs_to_flush);
started = true;
return true;
}
bool IPCDevice2::stop()
{
if (!started)
return true;
LOGC(DDEV, NOTICE) << "All channels stopped, terminating...";
/* reset internal buffer timestamps */
for (size_t i = 0; i < rx_buffers.size(); i++)
rx_buffers[i]->reset();
started = false;
return true;
}
double IPCDevice2::maxRxGain()
{
return 70;
}
double IPCDevice2::minRxGain()
{
return 0;
}
int IPCDevice2::getNominalTxPower(size_t chan)
{
return 10;
}
double IPCDevice2::setPowerAttenuation(int atten, size_t chan)
{
return atten;
}
double IPCDevice2::getPowerAttenuation(size_t chan)
{
return 0;
}
double IPCDevice2::setRxGain(double dB, size_t chan)
{
if (dB > maxRxGain())
dB = maxRxGain();
if (dB < minRxGain())
dB = minRxGain();
LOGCHAN(chan, DDEV, NOTICE) << "Setting RX gain to " << dB << " dB";
return dB;
}
bool IPCDevice2::flush_recv(size_t num_pkts)
{
ts_initial = 10000;
LOGC(DDEV, INFO) << "Initial timestamp " << ts_initial << std::endl;
return true;
}
bool IPCDevice2::setRxAntenna(const std::string &ant, size_t chan)
{
return true;
}
std::string IPCDevice2::getRxAntenna(size_t chan)
{
return "";
}
bool IPCDevice2::setTxAntenna(const std::string &ant, size_t chan)
{
return true;
}
std::string IPCDevice2::getTxAntenna(size_t chan)
{
return "";
}
bool IPCDevice2::requiresRadioAlign()
{
return false;
}
GSM::Time IPCDevice2::minLatency()
{
/* UNUSED */
return GSM::Time(0, 0);
}
/** Returns the starting write Timestamp*/
TIMESTAMP IPCDevice2::initialWriteTimestamp(void)
{
return ts_initial;
}
/** Returns the starting read Timestamp*/
TIMESTAMP IPCDevice2::initialReadTimestamp(void)
{
return ts_initial;
}
static timespec readtime, writetime;
static void wait_for_sample_time(timespec* last, unsigned int len) {
timespec ts, diff;
clock_gettime(CLOCK_MONOTONIC, &ts);
timespecsub(&ts, last, &diff);
auto elapsed_us = (diff.tv_sec * 1000000) + (diff.tv_nsec / 1000);
auto max_wait_us = ONE_SAMPLE_DURATION_US * len;
if(elapsed_us < max_wait_us)
usleep(max_wait_us-elapsed_us);
*last = ts;
}
// NOTE: Assumes sequential reads
int IPCDevice2::readSamples(std::vector<short *> &bufs, int len, bool *overrun, TIMESTAMP timestamp, bool *underrun)
{
int rc, num_smpls; //, expect_smpls;
ssize_t avail_smpls;
unsigned int i = 0;
*overrun = false;
*underrun = false;
timestamp += 0;
/* Check that timestamp is valid */
rc = rx_buffers[0]->avail_smpls(timestamp);
if (rc < 0) {
LOGC(DDEV, ERROR) << rx_buffers[0]->str_code(rc);
LOGC(DDEV, ERROR) << rx_buffers[0]->str_status(timestamp);
return 0;
}
/* Receive samples from HW until we have enough */
while ((avail_smpls = rx_buffers[i]->avail_smpls(timestamp)) < len) {
uint64_t recv_timestamp = timestamp;
m.read_ul(len - avail_smpls, &recv_timestamp, reinterpret_cast<sample_t *>(bufs[0]));
num_smpls = len - avail_smpls;
wait_for_sample_time(&readtime, num_smpls);
if (num_smpls == -ETIMEDOUT)
continue;
LOGCHAN(i, DDEV, DEBUG)
"Received timestamp = " << (TIMESTAMP)recv_timestamp << " (" << num_smpls << ")";
rc = rx_buffers[i]->write(bufs[i], num_smpls, (TIMESTAMP)recv_timestamp);
if (rc < 0) {
LOGCHAN(i, DDEV, ERROR)
<< rx_buffers[i]->str_code(rc) << " num smpls: " << num_smpls << " chan: " << i;
LOGCHAN(i, DDEV, ERROR) << rx_buffers[i]->str_status(timestamp);
if (rc != smpl_buf::ERROR_OVERFLOW)
return 0;
}
}
/* We have enough samples */
rc = rx_buffers[i]->read(bufs[i], len, timestamp);
if ((rc < 0) || (rc != len)) {
LOGCHAN(i, DDEV, ERROR) << rx_buffers[i]->str_code(rc) << ". " << rx_buffers[i]->str_status(timestamp)
<< ", (len=" << len << ")";
return 0;
}
return len;
}
int IPCDevice2::writeSamples(std::vector<short *> &bufs, int len, bool *underrun, unsigned long long timestamp)
{
*underrun = false;
LOGCHAN(0, DDEV, DEBUG) << "send buffer of len " << len << " timestamp " << std::hex << timestamp;
// rc = ipc_shm_enqueue(shm_io_tx_streams[i], timestamp, len, (uint16_t *)bufs[i]);
m.write_dl(len, timestamp, reinterpret_cast<sample_t *>(bufs[0]));
wait_for_sample_time(&writetime, len);
return 0;
}
bool IPCDevice2::updateAlignment(TIMESTAMP timestamp)
{
return true;
}
bool IPCDevice2::setTxFreq(double wFreq, size_t chan)
{
return true;
}
bool IPCDevice2::setRxFreq(double wFreq, size_t chan)
{
return true;
}
RadioDevice *RadioDevice::make(size_t tx_sps, size_t rx_sps, InterfaceType iface, size_t chans, double lo_offset,
const std::vector<std::string> &tx_paths, const std::vector<std::string> &rx_paths)
{
if (tx_sps != rx_sps) {
LOGC(DDEV, ERROR) << "IPC Requires tx_sps == rx_sps";
return NULL;
}
if (lo_offset != 0.0) {
LOGC(DDEV, ERROR) << "IPC doesn't support lo_offset";
return NULL;
}
return new IPCDevice2(tx_sps, rx_sps, iface, chans, lo_offset, tx_paths, rx_paths);
}

View File

@@ -0,0 +1,186 @@
/*
* Copyright 2020 sysmocom - s.f.m.c. GmbH <info@sysmocom.de>
* Author: Pau Espin Pedrol <pespin@sysmocom.de>
*
* SPDX-License-Identifier: AGPL-3.0+
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* See the COPYING file in the main directory for details.
*/
#ifndef _IPC_DEVICE_H_
#define _IPC_DEVICE_H_
#include <climits>
#include <string>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "radioDevice.h"
#include "ipcif.h"
class smpl_buf;
class IPCDevice2 : public RadioDevice {
trxmsif m;
protected:
std::vector<smpl_buf *> rx_buffers;
double actualSampleRate;
bool started;
TIMESTAMP ts_initial;
std::vector<double> tx_gains, rx_gains;
bool flush_recv(size_t num_pkts);
void update_stream_stats_rx(size_t chan, bool *overrun);
void update_stream_stats_tx(size_t chan, bool *underrun);
bool send_chan_wait_rsp(uint32_t chan, struct msgb *msg_to_send, uint32_t expected_rsp_msg_id);
bool send_all_chan_wait_rsp(uint32_t msgid_to_send, uint32_t msgid_to_expect);
public:
/** Object constructor */
IPCDevice2(size_t tx_sps, size_t rx_sps, InterfaceType iface, size_t chan_num, double lo_offset,
const std::vector<std::string> &tx_paths, const std::vector<std::string> &rx_paths);
virtual ~IPCDevice2() override;
/** Instantiate the IPC */
virtual int open(const std::string &args, int ref, bool swap_channels) override;
/** Start the IPC */
virtual bool start() override;
/** Stop the IPC */
virtual bool stop() override;
/* FIXME: any != USRP1 will do for now... */
enum TxWindowType getWindowType() override
{
return TX_WINDOW_FIXED;
}
/**
Read samples from the IPC.
@param buf preallocated buf to contain read result
@param len number of samples desired
@param overrun Set if read buffer has been overrun, e.g. data not being read fast enough
@param timestamp The timestamp of the first samples to be read
@param underrun Set if IPC does not have data to transmit, e.g. data not being sent fast enough
@return The number of samples actually read
*/
virtual int readSamples(std::vector<short *> &buf, int len, bool *overrun, TIMESTAMP timestamp = 0xffffffff,
bool *underrun = NULL) override;
/**
Write samples to the IPC.
@param buf Contains the data to be written.
@param len number of samples to write.
@param underrun Set if IPC does not have data to transmit, e.g. data not being sent fast enough
@param timestamp The timestamp of the first sample of the data buffer.
@return The number of samples actually written
*/
virtual int writeSamples(std::vector<short *> &bufs, int len, bool *underrun,
TIMESTAMP timestamp = 0xffffffff) override;
/** Update the alignment between the read and write timestamps */
virtual bool updateAlignment(TIMESTAMP timestamp) override;
/** Set the transmitter frequency */
virtual bool setTxFreq(double wFreq, size_t chan = 0) override;
/** Set the receiver frequency */
virtual bool setRxFreq(double wFreq, size_t chan = 0) override;
/** Returns the starting write Timestamp*/
virtual TIMESTAMP initialWriteTimestamp(void) override;
/** Returns the starting read Timestamp*/
virtual TIMESTAMP initialReadTimestamp(void) override;
/** returns the full-scale transmit amplitude **/
virtual double fullScaleInputValue() override
{
return (double)SHRT_MAX * 1;
}
/** returns the full-scale receive amplitude **/
virtual double fullScaleOutputValue() override
{
return (double)SHRT_MAX * 1;
}
/** sets the receive chan gain, returns the gain setting **/
virtual double setRxGain(double dB, size_t chan = 0) override;
/** get the current receive gain */
virtual double getRxGain(size_t chan = 0) override
{
return rx_gains[chan];
}
/** return maximum Rx Gain **/
virtual double maxRxGain(void) override;
/** return minimum Rx Gain **/
virtual double minRxGain(void) override;
/* FIXME: return rx_gains[chan] ? receive factor from IPC Driver? */
double rssiOffset(size_t chan) override
{
return 0.0f;
};
double setPowerAttenuation(int atten, size_t chan) override;
double getPowerAttenuation(size_t chan = 0) override;
virtual int getNominalTxPower(size_t chan = 0) override;
/** sets the RX path to use, returns true if successful and false otherwise */
virtual bool setRxAntenna(const std::string &ant, size_t chan = 0) override;
/* return the used RX path */
virtual std::string getRxAntenna(size_t chan = 0) override;
/** sets the RX path to use, returns true if successful and false otherwise */
virtual bool setTxAntenna(const std::string &ant, size_t chan = 0) override;
/* return the used RX path */
virtual std::string getTxAntenna(size_t chan = 0) override;
/** return whether user drives synchronization of Tx/Rx of USRP */
virtual bool requiresRadioAlign() override;
/** return whether user drives synchronization of Tx/Rx of USRP */
virtual GSM::Time minLatency() override;
/** Return internal status values */
virtual inline double getTxFreq(size_t chan = 0) override
{
return 0;
}
virtual inline double getRxFreq(size_t chan = 0) override
{
return 0;
}
virtual inline double getSampleRate() override
{
return actualSampleRate;
}
};
#endif // _IPC_DEVICE_H_

View File

@@ -0,0 +1,14 @@
include $(top_srcdir)/Makefile.common
AM_CPPFLAGS = -Wall $(STD_DEFINES_AND_INCLUDES) -I${srcdir}/../common
AM_CFLAGS = -lpthread $(LIBOSMOCORE_CFLAGS)
AM_CXXFLAGS = -lpthread $(LIBOSMOCORE_CFLAGS)
AM_LDFLAGS = -lpthread -lrt
noinst_HEADERS = IPCDevice.h
noinst_LTLIBRARIES = libdevice.la
libdevice_la_SOURCES = IPCDevice.cpp
libdevice_la_LIBADD = $(top_builddir)/Transceiver52M/device/common/libdevice_common.la
libdevice_la_CXXFLAGS = $(AM_CXXFLAGS) -DIPCMAGIC

View File

@@ -0,0 +1,161 @@
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
#include <atomic>
#include <complex>
#include <cassert>
#include "shmif.h"
const int max_ul_rdlen = 1024 * 10;
const int max_dl_rdlen = 1024 * 10;
using sample_t = std::complex<int16_t>;
struct shm_if {
std::atomic<bool> ms_connected;
struct {
shm::shmmutex m;
shm::shmcond c;
std::atomic<uint64_t> ts;
std::atomic<size_t> len_req; // <-
std::atomic<size_t> len_written; // ->
sample_t buffer[max_ul_rdlen];
} ul;
struct {
shm::shmmutex writemutex;
shm::shmcond rdy2write;
shm::shmmutex readmutex;
shm::shmcond rdy2read;
std::atomic<uint64_t> ts;
std::atomic<size_t> len_req;
std::atomic<size_t> len_written;
sample_t buffer[max_dl_rdlen];
} dl;
};
// unique up to signed_type/2 diff
template <typename A> auto unsigned_diff(A a, A b) -> typename std::make_signed<A>::type
{
using stype = typename std::make_signed<A>::type;
return (a > b) ? static_cast<stype>(a - b) : -static_cast<stype>(b - a);
};
class trxmsif {
shm::shm<shm_if> m;
shm_if *ptr;
int dl_readoffset;
int samp2byte(int v)
{
return v * sizeof(sample_t);
}
public:
trxmsif() : m("trx-ms-if"), dl_readoffset(0)
{
}
bool create()
{
m.create();
ptr = m.p();
return m.isgood();
}
bool connect()
{
m.open();
ptr = m.p();
ptr->ms_connected = true;
return m.isgood();
}
bool good()
{
return m.isgood();
}
void write_dl(size_t howmany, uint64_t write_ts, sample_t *inbuf)
{
auto &dl = ptr->dl;
auto buf = &dl.buffer[0];
// if (ptr->ms_connected != true)
// return;
assert(sizeof(dl.buffer) >= samp2byte(howmany));
{
shm::signal_guard g(dl.writemutex, dl.rdy2write, dl.rdy2read);
memcpy(buf, inbuf, samp2byte(howmany));
dl.ts = write_ts;
dl.len_written = howmany;
}
}
void read_dl(size_t howmany, uint64_t* read_ts, sample_t *outbuf)
{
auto &dl = ptr->dl;
auto buf = &dl.buffer[0];
size_t len_avail = dl.len_written;
uint64_t ts = dl.ts;
auto left_to_read = len_avail - dl_readoffset;
// no data, wait for new buffer, maybe some data left afterwards
if (!left_to_read) {
shm::signal_guard g(dl.readmutex, dl.rdy2read, dl.rdy2write);
*read_ts = dl.ts;
len_avail = dl.len_written;
dl_readoffset += howmany;
assert(len_avail >= howmany);
memcpy(outbuf, buf, samp2byte(howmany));
return;
}
*read_ts = dl.ts + dl_readoffset;
left_to_read = len_avail - dl_readoffset;
// data left from prev read
if (left_to_read >= howmany) {
memcpy(outbuf, buf, samp2byte(howmany));
dl_readoffset += howmany;
return;
} else {
memcpy(outbuf, buf, samp2byte(left_to_read));
dl_readoffset = 0;
auto still_left_to_read = howmany - left_to_read;
{
shm::signal_guard g(dl.readmutex, dl.rdy2read, dl.rdy2write);
len_avail = dl.len_written;
dl_readoffset += still_left_to_read;
assert(len_avail >= still_left_to_read);
memcpy(outbuf + left_to_read, buf, samp2byte(still_left_to_read));
}
}
}
void read_ul(size_t howmany, uint64_t* read_ts, sample_t *outbuf)
{
// if (ptr->ms_connected != true) {
memset(outbuf, 0, samp2byte(howmany));
return;
// }
}
};

View File

@@ -0,0 +1,219 @@
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
#include <cstring>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <pthread.h>
#include <cerrno>
namespace shm
{
class shmmutex {
pthread_mutex_t mutex;
public:
shmmutex()
{
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST);
pthread_mutex_init(&mutex, &attr);
pthread_mutexattr_destroy(&attr);
}
~shmmutex()
{
pthread_mutex_destroy(&mutex);
}
void lock()
{
pthread_mutex_lock(&mutex);
}
bool try_lock()
{
return pthread_mutex_trylock(&mutex);
}
void unlock()
{
pthread_mutex_unlock(&mutex);
}
pthread_mutex_t *p()
{
return &mutex;
}
};
class shmcond {
pthread_cond_t cond;
public:
shmcond()
{
pthread_condattr_t attr;
pthread_condattr_init(&attr);
pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
pthread_cond_init(&cond, &attr);
pthread_condattr_destroy(&attr);
}
~shmcond()
{
pthread_cond_destroy(&cond);
}
void wait(shmmutex *lock)
{
pthread_cond_wait(&cond, lock->p());
}
void signal()
{
pthread_cond_signal(&cond);
}
void signal_all()
{
pthread_cond_broadcast(&cond);
}
};
template <typename IFT> class shm {
char shmname[512];
size_t IFT_sz = sizeof(IFT);
IFT *shmptr;
bool good;
int ipc_shm_setup(const char *shm_name)
{
int fd;
int rc;
void *ptr;
if ((fd = shm_open(shm_name, O_CREAT | O_RDWR | O_TRUNC, S_IRUSR | S_IWUSR)) < 0) {
rc = -errno;
return rc;
}
if (ftruncate(fd, IFT_sz) < 0) {
rc = -errno;
shm_unlink(shm_name);
::close(fd);
}
if ((ptr = mmap(NULL, IFT_sz, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0)) == MAP_FAILED) {
rc = -errno;
shm_unlink(shm_name);
::close(fd);
}
shmptr = new (ptr) IFT(); //static_cast<IFT *>(ptr);
::close(fd);
return 0;
}
int ipc_shm_connect(const char *shm_name)
{
int fd;
int rc;
void *ptr;
if ((fd = shm_open(shm_name, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR)) < 0) {
rc = -errno;
return rc;
}
struct stat shm_stat;
if (fstat(fd, &shm_stat) < 0) {
rc = -errno;
shm_unlink(shm_name);
::close(fd);
}
if ((ptr = mmap(NULL, shm_stat.st_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0)) == MAP_FAILED) {
rc = -errno;
shm_unlink(shm_name);
::close(fd);
}
shmptr = static_cast<IFT *>(ptr);
::close(fd);
return 0;
}
public:
using IFT_t = IFT;
explicit shm(const char *name) : good(false)
{
strncpy((char *)shmname, name, 512);
}
void create()
{
if (ipc_shm_setup(shmname) == 0)
good = true;
}
void open()
{
if (ipc_shm_connect(shmname) == 0)
good = true;
}
bool isgood() const
{
return good;
}
void close()
{
if (isgood())
shm_unlink(shmname);
}
IFT *p()
{
return shmptr;
}
};
class signal_guard {
shmmutex &m;
shmcond &s;
public:
explicit signal_guard(shmmutex &m, shmcond &wait_for, shmcond &to_signal) : m(m), s(to_signal)
{
m.lock();
wait_for.wait(&m);
}
~signal_guard()
{
s.signal();
m.unlock();
}
};
} // namespace shm

View File

@@ -0,0 +1 @@
#include "../uhd/UHDDevice.cpp"

View File

@@ -0,0 +1,255 @@
/*
* Copyright 2020 sysmocom - s.f.m.c. GmbH <info@sysmocom.de>
* Author: Eric Wild <ewild@sysmocom.de>
*
* SPDX-License-Identifier: 0BSD
*
* Permission to use, copy, modify, and/or distribute this software for any purpose
* with or without fee is hereby granted.THE SOFTWARE IS PROVIDED "AS IS" AND THE
* AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
* BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
* CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
* USE OR PERFORMANCE OF THIS SOFTWARE.
*/
extern "C" {
#include <osmocom/core/application.h>
#include <osmocom/core/talloc.h>
#include <osmocom/core/select.h>
#include <osmocom/core/socket.h>
#include <osmocom/core/logging.h>
#include <osmocom/core/utils.h>
#include <osmocom/core/msgb.h>
#include <osmocom/core/select.h>
#include <osmocom/core/timer.h>
#include "shm.h"
#include "ipc_shm.h"
#include "ipc-driver-test.h"
}
#include "../uhd/UHDDevice.h"
#include "uhdwrap.h"
#include "Logger.h"
#include "Threads.h"
#include "Utils.h"
int uhd_wrap::open(const std::string &args, int ref, bool swap_channels)
{
int rv = uhd_device::open(args, ref, swap_channels);
samps_per_buff_rx = rx_stream->get_max_num_samps();
samps_per_buff_tx = tx_stream->get_max_num_samps();
channel_count = usrp_dev->get_rx_num_channels();
wrap_rx_buffs = std::vector<std::vector<short> >(channel_count, std::vector<short>(2 * samps_per_buff_rx));
for (size_t i = 0; i < wrap_rx_buffs.size(); i++)
wrap_rx_buf_ptrs.push_back(&wrap_rx_buffs[i].front());
wrap_tx_buffs = std::vector<std::vector<short> >(channel_count, std::vector<short>(2 * 5000));
for (size_t i = 0; i < wrap_tx_buffs.size(); i++)
wrap_tx_buf_ptrs.push_back(&wrap_tx_buffs[i].front());
return rv;
}
uhd_wrap::~uhd_wrap()
{
// drvtest::gshutdown = 1;
//t->join();
}
size_t uhd_wrap::bufsizerx()
{
return samps_per_buff_rx;
}
size_t uhd_wrap::bufsizetx()
{
return samps_per_buff_tx;
}
int uhd_wrap::chancount()
{
return channel_count;
}
int uhd_wrap::wrap_read(TIMESTAMP *timestamp)
{
uhd::rx_metadata_t md;
size_t num_rx_samps = rx_stream->recv(wrap_rx_buf_ptrs, samps_per_buff_rx, md, 0.1, true);
*timestamp = md.time_spec.to_ticks(rx_rate);
return num_rx_samps; //uhd_device::readSamples(bufs, len, overrun, timestamp, underrun);
}
extern "C" void *uhdwrap_open(struct ipc_sk_if_open_req *open_req)
{
unsigned int rx_sps, tx_sps;
/* FIXME: dev arg string* */
/* FIXME: rx frontend bw? */
/* FIXME: tx frontend bw? */
ReferenceType cref;
switch (open_req->clockref) {
case FEATURE_MASK_CLOCKREF_EXTERNAL:
cref = ReferenceType::REF_EXTERNAL;
break;
case FEATURE_MASK_CLOCKREF_INTERNAL:
default:
cref = ReferenceType::REF_INTERNAL;
break;
}
std::vector<std::string> tx_paths;
std::vector<std::string> rx_paths;
for (unsigned int i = 0; i < open_req->num_chans; i++) {
tx_paths.push_back(open_req->chan_info[i].tx_path);
rx_paths.push_back(open_req->chan_info[i].rx_path);
}
/* FIXME: this is actually the sps value, not the sample rate!
* sample rate is looked up according to the sps rate by uhd backend */
rx_sps = open_req->rx_sample_freq_num / open_req->rx_sample_freq_den;
tx_sps = open_req->tx_sample_freq_num / open_req->tx_sample_freq_den;
uhd_wrap *uhd_wrap_dev =
new uhd_wrap(tx_sps, rx_sps, RadioDevice::NORMAL, open_req->num_chans, 0.0, tx_paths, rx_paths);
uhd_wrap_dev->open("", cref, false);
return uhd_wrap_dev;
}
extern "C" int32_t uhdwrap_get_bufsizerx(void *dev)
{
uhd_wrap *d = (uhd_wrap *)dev;
return d->bufsizerx();
}
extern "C" int32_t uhdwrap_get_timingoffset(void *dev)
{
uhd_wrap *d = (uhd_wrap *)dev;
return d->getTimingOffset();
}
extern "C" int32_t uhdwrap_read(void *dev, uint32_t num_chans)
{
TIMESTAMP t;
uhd_wrap *d = (uhd_wrap *)dev;
if (num_chans != d->wrap_rx_buf_ptrs.size()) {
perror("omg chans?!");
}
int32_t read = d->wrap_read(&t);
/* multi channel rx on b210 will return 0 due to alignment adventures, do not put 0 samples into a ipc buffer... */
if (read <= 0)
return read;
for (uint32_t i = 0; i < num_chans; i++) {
ipc_shm_enqueue(ios_rx_from_device[i], t, read, (uint16_t *)&d->wrap_rx_buffs[i].front());
}
return read;
}
extern "C" int32_t uhdwrap_write(void *dev, uint32_t num_chans, bool *underrun)
{
uhd_wrap *d = (uhd_wrap *)dev;
uint64_t timestamp;
int32_t len = -1;
for (uint32_t i = 0; i < num_chans; i++) {
len = ipc_shm_read(ios_tx_to_device[i], (uint16_t *)&d->wrap_tx_buffs[i].front(), 5000, &timestamp, 1);
if (len < 0)
return 0;
}
return d->writeSamples(d->wrap_tx_buf_ptrs, len, underrun, timestamp);
}
extern "C" double uhdwrap_set_freq(void *dev, double f, size_t chan, bool for_tx)
{
uhd_wrap *d = (uhd_wrap *)dev;
if (for_tx)
return d->setTxFreq(f, chan);
else
return d->setRxFreq(f, chan);
}
extern "C" double uhdwrap_set_gain(void *dev, double f, size_t chan, bool for_tx)
{
uhd_wrap *d = (uhd_wrap *)dev;
// if (for_tx)
// return d->setTxGain(f, chan);
// else
return d->setRxGain(f, chan);
}
extern "C" double uhdwrap_set_txatt(void *dev, double a, size_t chan)
{
uhd_wrap *d = (uhd_wrap *)dev;
return d->setPowerAttenuation(a, chan);
}
extern "C" int32_t uhdwrap_start(void *dev, int chan)
{
uhd_wrap *d = (uhd_wrap *)dev;
return d->start();
}
extern "C" int32_t uhdwrap_stop(void *dev, int chan)
{
uhd_wrap *d = (uhd_wrap *)dev;
return d->stop();
}
extern "C" void uhdwrap_fill_info_cnf(struct ipc_sk_if *ipc_prim)
{
struct ipc_sk_if_info_chan *chan_info;
uhd::device_addr_t args("");
uhd::device_addrs_t devs_found = uhd::device::find(args);
if (devs_found.size() < 1) {
std::cout << "\n No device found!";
exit(0);
}
uhd::usrp::multi_usrp::sptr usrp = uhd::usrp::multi_usrp::make(devs_found[0]);
auto rxchans = usrp->get_rx_num_channels();
auto txchans = usrp->get_tx_num_channels();
auto rx_range = usrp->get_rx_gain_range();
auto tx_range = usrp->get_tx_gain_range();
//auto nboards = usrp->get_num_mboards();
auto refs = usrp->get_clock_sources(0);
auto devname = usrp->get_mboard_name(0);
ipc_prim->u.info_cnf.feature_mask = 0;
if (std::find(refs.begin(), refs.end(), "internal") != refs.end())
ipc_prim->u.info_cnf.feature_mask |= FEATURE_MASK_CLOCKREF_INTERNAL;
if (std::find(refs.begin(), refs.end(), "external") != refs.end())
ipc_prim->u.info_cnf.feature_mask |= FEATURE_MASK_CLOCKREF_EXTERNAL;
// at least one duplex channel
auto num_chans = rxchans == txchans ? txchans : 1;
ipc_prim->u.info_cnf.iq_scaling_val_rx = 0.3;
ipc_prim->u.info_cnf.iq_scaling_val_tx = 1;
ipc_prim->u.info_cnf.max_num_chans = num_chans;
OSMO_STRLCPY_ARRAY(ipc_prim->u.info_cnf.dev_desc, devname.c_str());
chan_info = ipc_prim->u.info_cnf.chan_info;
for (unsigned int i = 0; i < ipc_prim->u.info_cnf.max_num_chans; i++) {
auto rxant = usrp->get_rx_antennas(i);
auto txant = usrp->get_tx_antennas(i);
for (unsigned int j = 0; j < txant.size(); j++) {
OSMO_STRLCPY_ARRAY(chan_info->tx_path[j], txant[j].c_str());
}
for (unsigned int j = 0; j < rxant.size(); j++) {
OSMO_STRLCPY_ARRAY(chan_info->rx_path[j], rxant[j].c_str());
}
chan_info->min_rx_gain = rx_range.start();
chan_info->max_rx_gain = rx_range.stop();
chan_info->min_tx_gain = tx_range.start();
chan_info->max_tx_gain = tx_range.stop();
chan_info->nominal_tx_power = 7.5; // FIXME: would require uhd dev + freq info
chan_info++;
}
}

View File

@@ -0,0 +1,83 @@
/*
* Copyright 2020 sysmocom - s.f.m.c. GmbH <info@sysmocom.de>
* Author: Eric Wild <ewild@sysmocom.de>
*
* SPDX-License-Identifier: 0BSD
*
* Permission to use, copy, modify, and/or distribute this software for any purpose
* with or without fee is hereby granted.THE SOFTWARE IS PROVIDED "AS IS" AND THE
* AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
* BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
* CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
* USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef IPC_UHDWRAP_H
#define IPC_UHDWRAP_H
#ifdef __cplusplus
#include "../uhd/UHDDevice.h"
class uhd_wrap : public uhd_device {
public:
// std::thread *t;
size_t samps_per_buff_rx;
size_t samps_per_buff_tx;
int channel_count;
std::vector<std::vector<short> > wrap_rx_buffs;
std::vector<std::vector<short> > wrap_tx_buffs;
std::vector<short *> wrap_rx_buf_ptrs;
std::vector<short *> wrap_tx_buf_ptrs;
template <typename... Args> uhd_wrap(Args... args) : uhd_device(args...)
{
// t = new std::thread(magicthread);
// give the thread some time to start and set up
// std::this_thread::sleep_for(std::chrono::seconds(1));
}
virtual ~uhd_wrap();
// void ipc_sock_close() override {};
int wrap_read(TIMESTAMP *timestamp);
virtual int open(const std::string &args, int ref, bool swap_channels) override;
// bool start() override;
// bool stop() override;
// virtual TIMESTAMP initialWriteTimestamp() override;
// virtual TIMESTAMP initialReadTimestamp() override;
int getTimingOffset()
{
return ts_offset;
}
size_t bufsizerx();
size_t bufsizetx();
int chancount();
};
#else
void *uhdwrap_open(struct ipc_sk_if_open_req *open_req);
int32_t uhdwrap_get_bufsizerx(void *dev);
int32_t uhdwrap_get_timingoffset(void *dev);
int32_t uhdwrap_read(void *dev, uint32_t num_chans);
int32_t uhdwrap_write(void *dev, uint32_t num_chans, bool *underrun);
double uhdwrap_set_freq(void *dev, double f, size_t chan, bool for_tx);
double uhdwrap_set_gain(void *dev, double f, size_t chan, bool for_tx);
int32_t uhdwrap_start(void *dev, int chan);
int32_t uhdwrap_stop(void *dev, int chan);
void uhdwrap_fill_info_cnf(struct ipc_sk_if *ipc_prim);
double uhdwrap_set_txatt(void *dev, double a, size_t chan);
#endif
#endif // IPC_B210_H

View File

@@ -0,0 +1,121 @@
#pragma once
#include <complex>
#define gr_complex std::complex<float>
#define GSM_SYMBOL_RATE (1625000.0/6.0) //symbols per second
#define GSM_SYMBOL_PERIOD (1.0/GSM_SYMBOL_RATE) //seconds per symbol
//Burst timing
#define TAIL_BITS 3
#define GUARD_BITS 8
#define GUARD_FRACTIONAL 0.25 //fractional part of guard period
#define GUARD_PERIOD GUARD_BITS + GUARD_FRACTIONAL
#define DATA_BITS 57 //size of 1 data block in normal burst
#define STEALING_BIT 1
#define N_TRAIN_BITS 26
#define N_SYNC_BITS 64
#define USEFUL_BITS 142 //(2*(DATA_BITS+STEALING_BIT) + N_TRAIN_BITS )
#define FCCH_BITS USEFUL_BITS
#define BURST_SIZE (USEFUL_BITS+2*TAIL_BITS)
#define ACCESS_BURST_SIZE 88
#define PROCESSED_CHUNK BURST_SIZE+2*GUARD_PERIOD
#define SCH_DATA_LEN 39
#define TS_BITS (TAIL_BITS+USEFUL_BITS+TAIL_BITS+GUARD_BITS) //a full TS (156 bits)
#define TS_PER_FRAME 8
#define FRAME_BITS (TS_PER_FRAME * TS_BITS + 2) // 156.25 * 8
#define FCCH_POS TAIL_BITS
#define SYNC_POS (TAIL_BITS + 39)
#define TRAIN_POS ( TAIL_BITS + (DATA_BITS+STEALING_BIT) + 5) //first 5 bits of a training sequence
//aren't used for channel impulse response estimation
#define TRAIN_BEGINNING 5
#define SAFETY_MARGIN 6 //
#define FCCH_HITS_NEEDED (USEFUL_BITS - 4)
#define FCCH_MAX_MISSES 1
#define FCCH_MAX_FREQ_OFFSET 100
#define CHAN_IMP_RESP_LENGTH 5
#define MAX_SCH_ERRORS 10 //maximum number of subsequent sch errors after which gsm receiver goes to find_next_fcch state
typedef enum { empty, fcch_burst, sch_burst, normal_burst, rach_burst, dummy, dummy_or_normal, normal_or_noise } burst_type;
typedef enum { unknown, multiframe_26, multiframe_51 } multiframe_type;
static const unsigned char SYNC_BITS[] = {
1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1,
0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1
};
const unsigned FCCH_FRAMES[] = { 0, 10, 20, 30, 40 };
const unsigned SCH_FRAMES[] = { 1, 11, 21, 31, 41 };
const unsigned BCCH_FRAMES[] = { 2, 3, 4, 5 }; //!!the receiver shouldn't care about logical
//!!channels so this will be removed from this header
const unsigned TEST_CCH_FRAMES[] = { 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49 };
const unsigned TRAFFIC_CHANNEL_F[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 };
const unsigned TEST51[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 };
#define TSC0 0
#define TSC1 1
#define TSC2 2
#define TSC3 3
#define TSC4 4
#define TSC5 5
#define TSC6 6
#define TSC7 7
#define TS_DUMMY 8
#define TRAIN_SEQ_NUM 9
#define TIMESLOT0 0
#define TIMESLOT1 1
#define TIMESLOT2 2
#define TIMESLOT3 3
#define TIMESLOT4 4
#define TIMESLOT5 5
#define TIMESLOT6 6
#define TIMESLOT7 7
static const unsigned char train_seq[TRAIN_SEQ_NUM][N_TRAIN_BITS] = {
{0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1},
{0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1},
{0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0},
{0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0},
{0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1},
{0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0},
{1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1},
{1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0},
{0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1} // DUMMY
};
//Dummy burst 0xFB 76 0A 4E 09 10 1F 1C 5C 5C 57 4A 33 39 E9 F1 2F A8
static const unsigned char dummy_burst[] = {
0, 0, 0,
1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
1, 1, 0, 1, 1, 0, 0, 0, 0, 0,
1, 0, 1, 0, 0, 1, 0, 0, 1, 1,
1, 0, 0, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 0, 0,
0, 1, 1, 1, 0, 0, 0, 1, 0, 1,
1, 1, 0, 0, 0, 1, 0, 1, 1, 1,
0, 0, 0, 1, 0, 1,
0, 1, 1, 1, 0, 1, 0, 0, 1, 0,
1, 0, 0, 0, 1, 1, 0, 0, 1, 1,
0, 0, 1, 1, 1, 0, 0, 1, 1, 1,
1, 0, 1, 0, 0, 1, 1, 1, 1, 1,
0, 0, 0, 1, 0, 0, 1, 0, 1, 1,
1, 1, 1, 0, 1, 0, 1, 0,
0, 0, 0
};

View File

@@ -0,0 +1,338 @@
/* -*- c++ -*- */
/*
* @file
* @author (C) 2009-2017 by Piotr Krysik <ptrkrysik@gmail.com>
* @section LICENSE
*
* Gr-gsm is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* Gr-gsm is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with gr-gsm; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "constants.h"
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <complex>
#include <algorithm>
#include <string.h>
#include <iostream>
#include <numeric>
#include <vector>
#include <fstream>
#include "viterbi_detector.h"
#include "grgsm_vitac.h"
//signalVector mChanResp;
gr_complex d_sch_training_seq[N_SYNC_BITS]; ///<encoded training sequence of a SCH burst
gr_complex d_norm_training_seq[TRAIN_SEQ_NUM][N_TRAIN_BITS]; ///<encoded training sequences of a normal and dummy burst
const int d_chan_imp_length = CHAN_IMP_RESP_LENGTH;
void initvita() {
/**
* Prepare SCH sequence bits
*
* (TS_BITS + 2 * GUARD_PERIOD)
* Burst and two guard periods
* (one guard period is an arbitrary overlap)
*/
gmsk_mapper(SYNC_BITS, N_SYNC_BITS,
d_sch_training_seq, gr_complex(0.0, -1.0));
for (auto &i : d_sch_training_seq)
i = conj(i);
/* Prepare bits of training sequences */
for (int i = 0; i < TRAIN_SEQ_NUM; i++) {
/**
* If first bit of the sequence is 0
* => first symbol is 1, else -1
*/
gr_complex startpoint = train_seq[i][0] == 0 ?
gr_complex(1.0, 0.0) : gr_complex(-1.0, 0.0);
gmsk_mapper(train_seq[i], N_TRAIN_BITS,
d_norm_training_seq[i], startpoint);
for (auto &i : d_norm_training_seq[i])
i = conj(i);
}
}
MULTI_VER_TARGET_ATTR
void
detect_burst(const gr_complex* input,
gr_complex* chan_imp_resp, int burst_start,
unsigned char* output_binary)
{
std::vector<gr_complex> rhh_temp(CHAN_IMP_RESP_LENGTH * d_OSR);
unsigned int stop_states[2] = { 4, 12 };
gr_complex filtered_burst[BURST_SIZE];
gr_complex rhh[CHAN_IMP_RESP_LENGTH];
float output[BURST_SIZE];
int start_state = 3;
// if(burst_start < 0 ||burst_start > 10)
// fprintf(stderr, "bo %d\n", burst_start);
// burst_start = burst_start >= 0 ? burst_start : 0;
autocorrelation(chan_imp_resp, &rhh_temp[0], d_chan_imp_length * d_OSR);
for (int ii = 0; ii < d_chan_imp_length; ii++)
rhh[ii] = conj(rhh_temp[ii * d_OSR]);
mafi(&input[burst_start], BURST_SIZE, chan_imp_resp,
d_chan_imp_length * d_OSR, filtered_burst);
viterbi_detector(filtered_burst, BURST_SIZE, rhh,
start_state, stop_states, 2, output);
for (int i = 0; i < BURST_SIZE; i++)
output_binary[i] = output[i] > 0;
}
int process_vita_burst(gr_complex* input, int tsc, unsigned char* output_binary) {
gr_complex channel_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
int normal_burst_start, dummy_burst_start;
float dummy_corr_max, normal_corr_max;
dummy_burst_start = get_norm_chan_imp_resp(input,
&channel_imp_resp[0], &dummy_corr_max, TS_DUMMY);
normal_burst_start = get_norm_chan_imp_resp(input,
&channel_imp_resp[0], &normal_corr_max, tsc);
if (normal_corr_max > dummy_corr_max) {
/* Perform MLSE detection */
detect_burst(input, &channel_imp_resp[0],
normal_burst_start, output_binary);
return 0;
} else {
memcpy(output_binary, dummy_burst, 148);
//std::cerr << std::endl << "#NOPE#" << dd.fpath << std::endl << std::endl;
return -1;
}
}
int process_vita_sc_burst(gr_complex* input, int tsc, unsigned char* output_binary, int* offset) {
gr_complex channel_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
/* Get channel impulse response */
int d_c0_burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]);
// *offset = d_c0_burst_start;
/* Perform MLSE detection */
detect_burst(input, &channel_imp_resp[0],
d_c0_burst_start, output_binary);
return 0;
}
void
gmsk_mapper(const unsigned char* input,
int nitems, gr_complex* gmsk_output, gr_complex start_point)
{
gr_complex j = gr_complex(0.0, 1.0);
gmsk_output[0] = start_point;
int previous_symbol = 2 * input[0] - 1;
int current_symbol;
int encoded_symbol;
for (int i = 1; i < nitems; i++) {
/* Change bits representation to NRZ */
current_symbol = 2 * input[i] - 1;
/* Differentially encode */
encoded_symbol = current_symbol * previous_symbol;
/* And do GMSK mapping */
gmsk_output[i] = j * gr_complex(encoded_symbol, 0.0)
* gmsk_output[i - 1];
previous_symbol = current_symbol;
}
}
gr_complex
correlate_sequence(const gr_complex* sequence,
int length, const gr_complex* input)
{
gr_complex result(0.0, 0.0);
for (int ii = 0; ii < length; ii++)
result += sequence[ii] * input[ii * d_OSR];
return conj(result) / gr_complex(length, 0);
}
/* Computes autocorrelation for positive arguments */
inline void
autocorrelation(const gr_complex* input,
gr_complex* out, int nitems)
{
for (int k = nitems - 1; k >= 0; k--) {
out[k] = gr_complex(0, 0);
for (int i = k; i < nitems; i++)
out[k] += input[i] * conj(input[i - k]);
}
}
inline void
mafi(const gr_complex* input, int nitems,
gr_complex* filter, int filter_length, gr_complex* output)
{
for (int n = 0; n < nitems; n++) {
int a = n * d_OSR;
output[n] = 0;
for (int ii = 0; ii < filter_length; ii++) {
if ((a + ii) >= nitems * d_OSR)
break;
output[n] += input[a + ii] * filter[ii];
}
}
}
int get_chan_imp_resp(const gr_complex *input, gr_complex *chan_imp_resp, int search_center, int search_start_pos,
int search_stop_pos, gr_complex *tseq, int tseqlen, float *corr_max)
{
std::vector<gr_complex> correlation_buffer;
std::vector<float> window_energy_buffer;
std::vector<float> power_buffer;
for (int ii = search_start_pos; ii < search_stop_pos; ii++) {
gr_complex correlation = correlate_sequence(tseq, tseqlen, &input[ii]);
correlation_buffer.push_back(correlation);
power_buffer.push_back(std::pow(abs(correlation), 2));
}
int strongest_corr_nr = max_element(power_buffer.begin(), power_buffer.end()) - power_buffer.begin();
/* Compute window energies */
auto window_energy_start_offset = strongest_corr_nr - 6 * d_OSR;
window_energy_start_offset = window_energy_start_offset < 0 ? 0 : window_energy_start_offset; //can end up out of range..
auto window_energy_end_offset = strongest_corr_nr + 6 * d_OSR + d_chan_imp_length * d_OSR;
auto iter = power_buffer.begin() + window_energy_start_offset;
auto iter_end = power_buffer.begin() + window_energy_end_offset;
while (iter != iter_end) {
std::vector<float>::iterator iter_ii = iter;
bool loop_end = false;
float energy = 0;
int len = d_chan_imp_length * d_OSR;
for (int ii = 0; ii < len; ii++, iter_ii++) {
if (iter_ii == power_buffer.end()) {
loop_end = true;
break;
}
energy += (*iter_ii);
}
if (loop_end)
break;
window_energy_buffer.push_back(energy);
iter++;
}
/* Calculate the strongest window number */
int strongest_window_nr = window_energy_start_offset +
max_element(window_energy_buffer.begin(), window_energy_buffer.end()) -
window_energy_buffer.begin();
// auto window_search_start = window_energy_buffer.begin() + strongest_corr_nr - 5* d_OSR;
// auto window_search_end = window_energy_buffer.begin() + strongest_corr_nr + 10* d_OSR;
// window_search_end = window_search_end >= window_energy_buffer.end() ? window_energy_buffer.end() : window_search_end;
// /* Calculate the strongest window number */
// int strongest_window_nr = max_element(window_search_start, window_search_end /* - d_chan_imp_length * d_OSR*/) - window_energy_buffer.begin();
// if (strongest_window_nr < 0)
// strongest_window_nr = 0;
float max_correlation = 0;
for (int ii = 0; ii < d_chan_imp_length * d_OSR; ii++) {
gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
if (abs(correlation) > max_correlation)
max_correlation = abs(correlation);
chan_imp_resp[ii] = correlation;
}
*corr_max = max_correlation;
/**
* Compute first sample position, which corresponds
* to the first sample of the impulse response
*/
return search_start_pos + strongest_window_nr - search_center * d_OSR;
}
/*
3 + 57 + 1 + 26 + 1 + 57 + 3 + 8.25
search center = 3 + 57 + 1 + 5 (due to tsc 5+16+5 split)
this is +-5 samples around (+5 beginning) of truncated t16 tsc
*/
int get_norm_chan_imp_resp(const gr_complex *input, gr_complex *chan_imp_resp, float *corr_max, int bcc)
{
const int search_center = TRAIN_POS;
const int search_start_pos = (search_center - 5) * d_OSR + 1;
const int search_stop_pos = (search_center + 5 + d_chan_imp_length) * d_OSR;
const auto tseq = &d_norm_training_seq[bcc][TRAIN_BEGINNING];
const auto tseqlen = N_TRAIN_BITS - (2 * TRAIN_BEGINNING);
return get_chan_imp_resp(input, chan_imp_resp, search_center, search_start_pos, search_stop_pos, tseq, tseqlen,
corr_max);
}
/*
3 tail | 39 data | 64 tsc | 39 data | 3 tail | 8.25 guard
start 3+39 - 10
end 3+39 + SYNC_SEARCH_RANGE
*/
int get_sch_chan_imp_resp(const gr_complex *input, gr_complex *chan_imp_resp)
{
const int search_center = SYNC_POS + TRAIN_BEGINNING;
const int search_start_pos = (search_center - 10) * d_OSR;
const int search_stop_pos = (search_center + SYNC_SEARCH_RANGE) * d_OSR;
const auto tseq = &d_sch_training_seq[TRAIN_BEGINNING];
const auto tseqlen = N_SYNC_BITS - (2 * TRAIN_BEGINNING);
// strongest_window_nr + chan_imp_resp_center + SYNC_POS *d_OSR - 48 * d_OSR - 2 * d_OSR + 2 ;
float corr_max;
return get_chan_imp_resp(input, chan_imp_resp, search_center, search_start_pos, search_stop_pos, tseq, tseqlen,
&corr_max);
}
int get_sch_buffer_chan_imp_resp(const gr_complex *input, gr_complex *chan_imp_resp, unsigned int len, float *corr_max)
{
const auto tseqlen = N_SYNC_BITS - (2 * TRAIN_BEGINNING);
const int search_center = SYNC_POS + TRAIN_BEGINNING;
const int search_start_pos = 0;
// FIXME: proper end offset
const int search_stop_pos = len - (N_SYNC_BITS*8);
auto tseq = &d_sch_training_seq[TRAIN_BEGINNING];
return get_chan_imp_resp(input, chan_imp_resp, search_center, search_start_pos, search_stop_pos, tseq, tseqlen,
corr_max);
}

View File

@@ -0,0 +1,42 @@
#pragma once
#include <vector>
#include "constants.h"
#if defined(__has_attribute)
#if __has_attribute(target_clones) && defined(__x86_64) && false
#define MULTI_VER_TARGET_ATTR __attribute__((target_clones("avx", "sse4.2", "sse3", "sse2", "sse", "default")))
#else
#define MULTI_VER_TARGET_ATTR
#endif
#endif
#define SYNC_SEARCH_RANGE 30
const int d_OSR(4);
void initvita();
int process_vita_burst(gr_complex *input, int tsc, unsigned char *output_binary);
int process_vita_sc_burst(gr_complex *input, int tsc, unsigned char *output_binary, int *offset);
MULTI_VER_TARGET_ATTR
void detect_burst(const gr_complex *input, gr_complex *chan_imp_resp, int burst_start, unsigned char *output_binary);
void gmsk_mapper(const unsigned char *input, int nitems, gr_complex *gmsk_output, gr_complex start_point);
gr_complex correlate_sequence(const gr_complex *sequence, int length, const gr_complex *input);
inline void autocorrelation(const gr_complex *input, gr_complex *out, int nitems);
inline void mafi(const gr_complex *input, int nitems, gr_complex *filter, int filter_length, gr_complex *output);
int get_sch_chan_imp_resp(const gr_complex *input, gr_complex *chan_imp_resp);
int get_norm_chan_imp_resp(const gr_complex *input, gr_complex *chan_imp_resp, float *corr_max, int bcc);
int get_sch_buffer_chan_imp_resp(const gr_complex *input, gr_complex *chan_imp_resp, unsigned int len, float *corr_max);
enum class btype { NB, SCH };
struct fdata {
btype t;
unsigned int fn;
int tn;
int bcc;
std::string fpath;
std::vector<gr_complex> data;
unsigned int data_start_offset;
};

View File

@@ -0,0 +1,392 @@
/* -*- c++ -*- */
/*
* @file
* @author (C) 2009 by Piotr Krysik <ptrkrysik@gmail.com>
* @section LICENSE
*
* Gr-gsm is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* Gr-gsm is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with gr-gsm; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* viterbi_detector:
* This part does the detection of received sequnece.
* Employed algorithm is viterbi Maximum Likehood Sequence Estimation.
* At this moment it gives hard decisions on the output, but
* it was designed with soft decisions in mind.
*
* SYNTAX: void viterbi_detector(
* const gr_complex * input,
* unsigned int samples_num,
* gr_complex * rhh,
* unsigned int start_state,
* const unsigned int * stop_states,
* unsigned int stops_num,
* float * output)
*
* INPUT: input: Complex received signal afted matched filtering.
* samples_num: Number of samples in the input table.
* rhh: The autocorrelation of the estimated channel
* impulse response.
* start_state: Number of the start point. In GSM each burst
* starts with sequence of three bits (0,0,0) which
* indicates start point of the algorithm.
* stop_states: Table with numbers of possible stop states.
* stops_num: Number of possible stop states
*
*
* OUTPUT: output: Differentially decoded hard output of the algorithm:
* -1 for logical "0" and 1 for logical "1"
*
* SUB_FUNC: none
*
* TEST(S): Tested with real world normal burst.
*/
#include "constants.h"
#include <cmath>
#define PATHS_NUM (1 << (CHAN_IMP_RESP_LENGTH-1))
void viterbi_detector(const gr_complex * input, unsigned int samples_num, gr_complex * rhh, unsigned int start_state, const unsigned int * stop_states, unsigned int stops_num, float * output)
{
float increment[8];
float path_metrics1[16];
float path_metrics2[16];
float paths_difference;
float * new_path_metrics;
float * old_path_metrics;
float * tmp;
float trans_table[BURST_SIZE][16];
float pm_candidate1, pm_candidate2;
bool real_imag;
float input_symbol_real, input_symbol_imag;
unsigned int i, sample_nr;
/*
* Setup first path metrics, so only state pointed by start_state is possible.
* Start_state metric is equal to zero, the rest is written with some very low value,
* which makes them practically impossible to occur.
*/
for(i=0; i<PATHS_NUM; i++){
path_metrics1[i]=(-10e30);
}
path_metrics1[start_state]=0;
/*
* Compute Increment - a table of values which does not change for subsequent input samples.
* Increment is table of reference levels for computation of branch metrics:
* branch metric = (+/-)received_sample (+/-) reference_level
*/
increment[0] = -rhh[1].imag() -rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[1] = rhh[1].imag() -rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[2] = -rhh[1].imag() +rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[3] = rhh[1].imag() +rhh[2].real() -rhh[3].imag() +rhh[4].real();
increment[4] = -rhh[1].imag() -rhh[2].real() +rhh[3].imag() +rhh[4].real();
increment[5] = rhh[1].imag() -rhh[2].real() +rhh[3].imag() +rhh[4].real();
increment[6] = -rhh[1].imag() +rhh[2].real() +rhh[3].imag() +rhh[4].real();
increment[7] = rhh[1].imag() +rhh[2].real() +rhh[3].imag() +rhh[4].real();
/*
* Computation of path metrics and decisions (Add-Compare-Select).
* It's composed of two parts: one for odd input samples (imaginary numbers)
* and one for even samples (real numbers).
* Each part is composed of independent (parallelisable) statements like
* this one:
* pm_candidate1 = old_path_metrics[0] -input_symbol_imag +increment[2];
* pm_candidate2 = old_path_metrics[8] -input_symbol_imag -increment[5];
* paths_difference=pm_candidate2-pm_candidate1;
* new_path_metrics[1]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
* trans_table[sample_nr][1] = paths_difference;
* This is very good point for optimisations (SIMD or OpenMP) as it's most time
* consuming part of this function.
*/
sample_nr=0;
old_path_metrics=path_metrics1;
new_path_metrics=path_metrics2;
while(sample_nr<samples_num){
//Processing imag states
real_imag=1;
input_symbol_imag = input[sample_nr].imag();
pm_candidate1 = old_path_metrics[0] +input_symbol_imag -increment[2];
pm_candidate2 = old_path_metrics[8] +input_symbol_imag +increment[5];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[0]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][0] = paths_difference;
pm_candidate1 = old_path_metrics[0] -input_symbol_imag +increment[2];
pm_candidate2 = old_path_metrics[8] -input_symbol_imag -increment[5];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[1]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][1] = paths_difference;
pm_candidate1 = old_path_metrics[1] +input_symbol_imag -increment[3];
pm_candidate2 = old_path_metrics[9] +input_symbol_imag +increment[4];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[2]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][2] = paths_difference;
pm_candidate1 = old_path_metrics[1] -input_symbol_imag +increment[3];
pm_candidate2 = old_path_metrics[9] -input_symbol_imag -increment[4];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[3]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][3] = paths_difference;
pm_candidate1 = old_path_metrics[2] +input_symbol_imag -increment[0];
pm_candidate2 = old_path_metrics[10] +input_symbol_imag +increment[7];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[4]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][4] = paths_difference;
pm_candidate1 = old_path_metrics[2] -input_symbol_imag +increment[0];
pm_candidate2 = old_path_metrics[10] -input_symbol_imag -increment[7];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[5]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][5] = paths_difference;
pm_candidate1 = old_path_metrics[3] +input_symbol_imag -increment[1];
pm_candidate2 = old_path_metrics[11] +input_symbol_imag +increment[6];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[6]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][6] = paths_difference;
pm_candidate1 = old_path_metrics[3] -input_symbol_imag +increment[1];
pm_candidate2 = old_path_metrics[11] -input_symbol_imag -increment[6];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[7]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][7] = paths_difference;
pm_candidate1 = old_path_metrics[4] +input_symbol_imag -increment[6];
pm_candidate2 = old_path_metrics[12] +input_symbol_imag +increment[1];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[8]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][8] = paths_difference;
pm_candidate1 = old_path_metrics[4] -input_symbol_imag +increment[6];
pm_candidate2 = old_path_metrics[12] -input_symbol_imag -increment[1];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[9]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][9] = paths_difference;
pm_candidate1 = old_path_metrics[5] +input_symbol_imag -increment[7];
pm_candidate2 = old_path_metrics[13] +input_symbol_imag +increment[0];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[10]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][10] = paths_difference;
pm_candidate1 = old_path_metrics[5] -input_symbol_imag +increment[7];
pm_candidate2 = old_path_metrics[13] -input_symbol_imag -increment[0];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[11]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][11] = paths_difference;
pm_candidate1 = old_path_metrics[6] +input_symbol_imag -increment[4];
pm_candidate2 = old_path_metrics[14] +input_symbol_imag +increment[3];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[12]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][12] = paths_difference;
pm_candidate1 = old_path_metrics[6] -input_symbol_imag +increment[4];
pm_candidate2 = old_path_metrics[14] -input_symbol_imag -increment[3];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[13]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][13] = paths_difference;
pm_candidate1 = old_path_metrics[7] +input_symbol_imag -increment[5];
pm_candidate2 = old_path_metrics[15] +input_symbol_imag +increment[2];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[14]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][14] = paths_difference;
pm_candidate1 = old_path_metrics[7] -input_symbol_imag +increment[5];
pm_candidate2 = old_path_metrics[15] -input_symbol_imag -increment[2];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[15]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][15] = paths_difference;
tmp=old_path_metrics;
old_path_metrics=new_path_metrics;
new_path_metrics=tmp;
sample_nr++;
if(sample_nr==samples_num)
break;
//Processing real states
real_imag=0;
input_symbol_real = input[sample_nr].real();
pm_candidate1 = old_path_metrics[0] -input_symbol_real -increment[7];
pm_candidate2 = old_path_metrics[8] -input_symbol_real +increment[0];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[0]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][0] = paths_difference;
pm_candidate1 = old_path_metrics[0] +input_symbol_real +increment[7];
pm_candidate2 = old_path_metrics[8] +input_symbol_real -increment[0];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[1]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][1] = paths_difference;
pm_candidate1 = old_path_metrics[1] -input_symbol_real -increment[6];
pm_candidate2 = old_path_metrics[9] -input_symbol_real +increment[1];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[2]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][2] = paths_difference;
pm_candidate1 = old_path_metrics[1] +input_symbol_real +increment[6];
pm_candidate2 = old_path_metrics[9] +input_symbol_real -increment[1];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[3]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][3] = paths_difference;
pm_candidate1 = old_path_metrics[2] -input_symbol_real -increment[5];
pm_candidate2 = old_path_metrics[10] -input_symbol_real +increment[2];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[4]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][4] = paths_difference;
pm_candidate1 = old_path_metrics[2] +input_symbol_real +increment[5];
pm_candidate2 = old_path_metrics[10] +input_symbol_real -increment[2];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[5]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][5] = paths_difference;
pm_candidate1 = old_path_metrics[3] -input_symbol_real -increment[4];
pm_candidate2 = old_path_metrics[11] -input_symbol_real +increment[3];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[6]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][6] = paths_difference;
pm_candidate1 = old_path_metrics[3] +input_symbol_real +increment[4];
pm_candidate2 = old_path_metrics[11] +input_symbol_real -increment[3];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[7]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][7] = paths_difference;
pm_candidate1 = old_path_metrics[4] -input_symbol_real -increment[3];
pm_candidate2 = old_path_metrics[12] -input_symbol_real +increment[4];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[8]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][8] = paths_difference;
pm_candidate1 = old_path_metrics[4] +input_symbol_real +increment[3];
pm_candidate2 = old_path_metrics[12] +input_symbol_real -increment[4];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[9]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][9] = paths_difference;
pm_candidate1 = old_path_metrics[5] -input_symbol_real -increment[2];
pm_candidate2 = old_path_metrics[13] -input_symbol_real +increment[5];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[10]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][10] = paths_difference;
pm_candidate1 = old_path_metrics[5] +input_symbol_real +increment[2];
pm_candidate2 = old_path_metrics[13] +input_symbol_real -increment[5];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[11]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][11] = paths_difference;
pm_candidate1 = old_path_metrics[6] -input_symbol_real -increment[1];
pm_candidate2 = old_path_metrics[14] -input_symbol_real +increment[6];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[12]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][12] = paths_difference;
pm_candidate1 = old_path_metrics[6] +input_symbol_real +increment[1];
pm_candidate2 = old_path_metrics[14] +input_symbol_real -increment[6];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[13]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][13] = paths_difference;
pm_candidate1 = old_path_metrics[7] -input_symbol_real -increment[0];
pm_candidate2 = old_path_metrics[15] -input_symbol_real +increment[7];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[14]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][14] = paths_difference;
pm_candidate1 = old_path_metrics[7] +input_symbol_real +increment[0];
pm_candidate2 = old_path_metrics[15] +input_symbol_real -increment[7];
paths_difference=pm_candidate2-pm_candidate1;
new_path_metrics[15]=(paths_difference<0) ? pm_candidate1 : pm_candidate2;
trans_table[sample_nr][15] = paths_difference;
tmp=old_path_metrics;
old_path_metrics=new_path_metrics;
new_path_metrics=tmp;
sample_nr++;
}
/*
* Find the best from the stop states by comparing their path metrics.
* Not every stop state is always possible, so we are searching in
* a subset of them.
*/
unsigned int best_stop_state;
float stop_state_metric, max_stop_state_metric;
best_stop_state = stop_states[0];
max_stop_state_metric = old_path_metrics[best_stop_state];
for(i=1; i< stops_num; i++){
stop_state_metric = old_path_metrics[stop_states[i]];
if(stop_state_metric > max_stop_state_metric){
max_stop_state_metric = stop_state_metric;
best_stop_state = stop_states[i];
}
}
/*
* This table was generated with hope that it gives a litle speedup during
* traceback stage.
* Received bit is related to the number of state in the trellis.
* I've numbered states so their parity (number of ones) is related
* to a received bit.
*/
static const unsigned int parity_table[PATHS_NUM] = { 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, };
/*
* Table of previous states in the trellis diagram.
* For GMSK modulation every state has two previous states.
* Example:
* previous_state_nr1 = prev_table[current_state_nr][0]
* previous_state_nr2 = prev_table[current_state_nr][1]
*/
static const unsigned int prev_table[PATHS_NUM][2] = { {0,8}, {0,8}, {1,9}, {1,9}, {2,10}, {2,10}, {3,11}, {3,11}, {4,12}, {4,12}, {5,13}, {5,13}, {6,14}, {6,14}, {7,15}, {7,15}, };
/*
* Traceback and differential decoding of received sequence.
* Decisions stored in trans_table are used to restore best path in the trellis.
*/
sample_nr=samples_num;
unsigned int state_nr=best_stop_state;
unsigned int decision;
bool out_bit=0;
while(sample_nr>0){
sample_nr--;
decision = (trans_table[sample_nr][state_nr]>0);
if(decision != out_bit)
output[sample_nr]=-trans_table[sample_nr][state_nr];
else
output[sample_nr]=trans_table[sample_nr][state_nr];
out_bit = out_bit ^ real_imag ^ parity_table[state_nr];
state_nr = prev_table[state_nr][decision];
real_imag = !real_imag;
}
}

View File

@@ -0,0 +1,64 @@
/* -*- c++ -*- */
/*
* @file
* @author (C) 2009 Piotr Krysik <ptrkrysik@gmail.com>
* @section LICENSE
*
* Gr-gsm is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* Gr-gsm is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with gr-gsm; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* viterbi_detector:
* This part does the detection of received sequnece.
* Employed algorithm is viterbi Maximum Likehood Sequence Estimation.
* At this moment it gives hard decisions on the output, but
* it was designed with soft decisions in mind.
*
* SYNTAX: void viterbi_detector(
* const gr_complex * input,
* unsigned int samples_num,
* gr_complex * rhh,
* unsigned int start_state,
* const unsigned int * stop_states,
* unsigned int stops_num,
* float * output)
*
* INPUT: input: Complex received signal afted matched filtering.
* samples_num: Number of samples in the input table.
* rhh: The autocorrelation of the estimated channel
* impulse response.
* start_state: Number of the start point. In GSM each burst
* starts with sequence of three bits (0,0,0) which
* indicates start point of the algorithm.
* stop_states: Table with numbers of possible stop states.
* stops_num: Number of possible stop states
*
*
* OUTPUT: output: Differentially decoded hard output of the algorithm:
* -1 for logical "0" and 1 for logical "1"
*
* SUB_FUNC: none
*
* TEST(S): Tested with real world normal burst.
*/
#ifndef INCLUDED_VITERBI_DETECTOR_H
#define INCLUDED_VITERBI_DETECTOR_H
#include "constants.h"
void viterbi_detector(const gr_complex * input, unsigned int samples_num, gr_complex * rhh, unsigned int start_state, const unsigned int * stop_states, unsigned int stops_num, float * output);
#endif /* INCLUDED_VITERBI_DETECTOR_H */

204
Transceiver52M/itrq.h Normal file
View File

@@ -0,0 +1,204 @@
#pragma once
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <atomic>
#include <condition_variable>
#include <mutex>
#include <sys/eventfd.h>
#include <unistd.h>
#include <stdatomic.h>
#include <stdbool.h>
#include <stdlib.h>
/*
classic lamport circular lockfree spsc queue:
every "side" only writes its own ptr, but may read the other sides ptr
notify reader using eventfd as soon as element is added, reader then reads until
read fails
-> reader pops in a loop until FALSE and might get spurious events because it
read before it was notified, which is fine
-> writing pushes *the same data* in a loop until TRUE, blocks
shutting this down requires
1) to stop reading and pushing
2) ONE side to take care of the eventfds
*/
namespace spsc_detail
{
template <bool block_read, bool block_write> class spsc_cond_detail {
std::condition_variable cond_r, cond_w;
std::mutex l;
public:
explicit spsc_cond_detail()
{
}
~spsc_cond_detail()
{
}
ssize_t spsc_check_r()
{
std::unique_lock<std::mutex> lk(l);
cond_r.wait(lk);
return 1;
}
ssize_t spsc_check_w()
{
std::unique_lock<std::mutex> lk(l);
cond_w.wait(lk);
return 1;
}
void spsc_notify_r()
{
cond_r.notify_one();
}
void spsc_notify_w()
{
cond_w.notify_one();
}
};
// originally designed for select loop integration
template <bool block_read, bool block_write> class spsc_efd_detail {
int efd_r, efd_w; /* eventfds used to block/notify readers/writers */
public:
explicit spsc_efd_detail()
: efd_r(eventfd(0, block_read ? 0 : EFD_NONBLOCK)), efd_w(eventfd(1, block_write ? 0 : EFD_NONBLOCK))
{
}
~spsc_efd_detail()
{
close(efd_r);
close(efd_w);
}
ssize_t spsc_check_r()
{
uint64_t efdr;
return read(efd_r, &efdr, sizeof(uint64_t));
}
ssize_t spsc_check_w()
{
uint64_t efdr;
return read(efd_w, &efdr, sizeof(uint64_t));
}
void spsc_notify_r()
{
uint64_t efdu = 1;
write(efd_r, &efdu, sizeof(uint64_t));
}
void spsc_notify_w()
{
uint64_t efdu = 1;
write(efd_w, &efdu, sizeof(uint64_t));
}
int get_r_efd()
{
return efd_r;
}
int get_w_efd()
{
return efd_w;
}
};
template <unsigned int SZ, typename ELEM, bool block_read, bool block_write, template <bool, bool> class T>
class spsc : public T<block_read, block_write> {
static_assert(SZ > 0, "queues need a size...");
std::atomic<unsigned int> readptr;
std::atomic<unsigned int> writeptr;
ELEM buf[SZ];
public:
using base_t = T<block_read, block_write>;
using elem_t = ELEM;
explicit spsc() : readptr(0), writeptr(0)
{
}
~spsc()
{
}
/*! Adds element to the queue by copying the data.
* \param[in] elem input buffer, must match the originally configured queue buffer size!.
* \returns true if queue was not full and element was successfully pushed */
bool spsc_push(ELEM *elem)
{
size_t cur_wp, cur_rp;
cur_wp = writeptr.load(std::memory_order_relaxed);
cur_rp = readptr.load(std::memory_order_acquire);
if ((cur_wp + 1) % SZ == cur_rp) {
if (block_write)
base_t::spsc_check_w(); /* blocks, ensures next (!) call succeeds */
return false;
}
buf[cur_wp] = *elem;
writeptr.store((cur_wp + 1) % SZ, std::memory_order_release);
if (block_read)
base_t::spsc_notify_r(); /* fine after release */
return true;
}
/*! Removes element from the queue by copying the data.
* \param[in] elem output buffer, must match the originally configured queue buffer size!.
* \returns true if queue was not empty and element was successfully removed */
bool spsc_pop(ELEM *elem)
{
size_t cur_wp, cur_rp;
cur_wp = writeptr.load(std::memory_order_acquire);
cur_rp = readptr.load(std::memory_order_relaxed);
if (cur_wp == cur_rp) /* blocks via prep_pop */
return false;
*elem = buf[cur_rp];
readptr.store((cur_rp + 1) % SZ, std::memory_order_release);
if (block_write)
base_t::spsc_notify_w();
return true;
}
/*! Reads the read-fd of the queue, which, depending on settings passed on queue creation, blocks.
* This function can be used to deliberately wait for a non-empty queue on the read side.
* \returns result of reading the fd. */
ssize_t spsc_prep_pop()
{
return base_t::spsc_check_r();
}
};
} // namespace spsc_detail
template <unsigned int SZ, typename ELEM, bool block_read, bool block_write>
class spsc_evfd : public spsc_detail::spsc<SZ, ELEM, block_read, block_write, spsc_detail::spsc_efd_detail> {};
template <unsigned int SZ, typename ELEM, bool block_read, bool block_write>
class spsc_cond : public spsc_detail::spsc<SZ, ELEM, block_read, block_write, spsc_detail::spsc_cond_detail> {};

124
Transceiver52M/l1if.cpp Normal file
View File

@@ -0,0 +1,124 @@
#include <mutex>
#include <queue>
#include <deque>
#include <condition_variable>
#include <iostream>
extern "C" {
#include <unistd.h>
#include <sys/eventfd.h>
#include <osmocom/core/utils.h>
#include <osmocom/core/select.h>
}
#include "l1if.h"
using namespace std;
using namespace std::chrono_literals;
template<typename Data>
class spsc_q{
std::queue<Data> m_q;
std::mutex m_mtx;
std::condition_variable m_cond;
bool killme;
public:
spsc_q() : killme{ false } { }
void push(Data i){
std::unique_lock<std::mutex> lock(m_mtx);
m_q.push(i);
m_cond.notify_one();
}
Data pop(){
std::unique_lock<std::mutex> lock(m_mtx);
m_cond.wait_for(lock, 100ms, [&](){ return !m_q.empty() || killme; });
if (killme || m_q.empty()){
return {};
}
Data x = m_q.front();
m_q.pop();
return x;
}
void stop(){
killme = true;
m_cond.notify_all();
}
auto sz() { return m_q.size(); }
};
/*
* trxif_from_trx_c <-> push_c
* trxif_to_trx_c <-> pop_c
* trxif_from_trx_d <-> push_d
* trxif_to_trx_d <-> pop_d
* ...
*
*
*/
class trxl1if {
public:
spsc_q<TRX_C*> c_to_trx;
spsc_q<TRX_C*> c_from_trx;
spsc_q<trxd_to_trx*> d_to_trx;
spsc_q<trxd_from_trx*> d_from_trx;
struct osmo_fd g_event_ofd_C;
struct osmo_fd g_event_ofd_D;
};
trxl1if trxif;
void push_c(TRX_C* i) {
uint64_t one = 1;
int rc;
trxif.c_from_trx.push(i);
// std::clog << trxif.c_from_trx.sz() << std::endl;
rc = ::write(trxif.g_event_ofd_C.fd, &one, sizeof(one));
return;
};
TRX_C* pop_c() {
return trxif.c_to_trx.pop();
};
void push_d(trxd_from_trx* i) {
uint64_t one = 1;
int rc;
trxif.d_from_trx.push(i);
rc = ::write(trxif.g_event_ofd_D.fd, &one, sizeof(one));
return;
};
trxd_to_trx* pop_d() {
return trxif.d_to_trx.pop();
};
extern "C" {
char* trxif_from_trx_c() {
uint64_t one = 1;
::read(trxif.g_event_ofd_C.fd, &one, sizeof(one));
return (char*)trxif.c_from_trx.pop();
}
void trxif_to_trx_c(char* msg) {
trxif.c_to_trx.push((TRX_C*)msg);
}
trxd_from_trx* trxif_from_trx_d() {
uint64_t one = 1;
::read(trxif.g_event_ofd_D.fd, &one, sizeof(one));
return trxif.d_from_trx.pop();
}
void trxif_to_trx_d(trxd_to_trx* msg) {
trxif.d_to_trx.push(msg);
}
struct osmo_fd* get_c_fd() { return &trxif.g_event_ofd_C;}
struct osmo_fd* get_d_fd() { return &trxif.g_event_ofd_D;}
}

74
Transceiver52M/l1if.h Normal file
View File

@@ -0,0 +1,74 @@
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#ifdef __cplusplus
}
#endif
/* ------------------------------------------------------------------------ */
/* Data interface handlers */
/* ------------------------------------------------------------------------ */
/* DATA interface */
/* */
/* Messages on the data interface carry one radio burst per UDP message. */
/* */
/* Received Data Burst: */
/* 1 byte timeslot index */
/* 4 bytes GSM frame number, BE */
/* 1 byte RSSI in -dBm */
/* 2 bytes correlator timing offset in 1/256 symbol steps, 2's-comp, BE */
/* 148 bytes soft symbol estimates, 0 -> definite "0", 255 -> definite "1" */
/* 2 bytes are not used, but being sent by OsmoTRX */
/* */
/* Transmit Data Burst: */
/* 1 byte timeslot index */
/* 4 bytes GSM frame number, BE */
/* 1 byte transmit level wrt ARFCN max, -dB (attenuation) */
/* 148 bytes output symbol values, 0 & 1 */
/* ------------------------------------------------------------------------ */
struct __attribute__((packed)) trxd_to_trx {
uint8_t ts;
uint32_t fn;
uint8_t txlev;
uint8_t symbols[148];
};
struct __attribute__((packed)) trxd_from_trx {
uint8_t ts;
uint32_t fn;
uint8_t rssi;
uint16_t toa;
uint8_t symbols[148];
uint8_t pad[2];
};
#define TRXC_BUF_SIZE 1024
struct TRX_C {
char cmd[TRXC_BUF_SIZE];
};
#ifdef __cplusplus
void push_c(TRX_C* i);
TRX_C* pop_c();
void push_d(trxd_from_trx* i);
trxd_to_trx* pop_d();
#else
char* trxif_from_trx_c();
void trxif_to_trx_c(char* msg);
struct trxd_from_trx* trxif_from_trx_d();
void trxif_to_trx_d(struct trxd_to_trx* msg);
struct osmo_fd* get_c_fd();
struct osmo_fd* get_d_fd();
#endif

View File

@@ -0,0 +1,482 @@
#pragma once
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "itrq.h"
#include <atomic>
#include <complex>
#include <cstdint>
#include <functional>
#include <iostream>
#include <cassert>
#include <cstring>
#include <libbladeRF.h>
#include <Timeval.h>
#include <unistd.h>
const size_t BLADE_BUFFER_SIZE = 1024 * 1;
const size_t BLADE_NUM_BUFFERS = 32 * 1;
const size_t NUM_TRANSFERS = 16 * 2;
const int SAMPLE_SCALE_FACTOR = 15; // actually 16 but sigproc complains about clipping..
template <typename Arg, typename... Args> void doPrint(std::ostream &out, Arg &&arg, Args &&...args)
{
out << '(' << std::forward<Arg>(arg);
using expander = int[];
(void)expander{ 0, (void(out << ',' << std::forward<Args>(args)), 0)... };
out << ')' << std::endl;
}
template <class R, class... Args> using RvalFunc = R (*)(Args...);
// specialisation for funcs which return a value
template <class R, class... Args>
R exec_and_check(RvalFunc<R, Args...> func, const char *fname, const char *finame, const char *funcname, int line,
Args... args)
{
R rval = func(std::forward<Args>(args)...);
if (rval != 0) {
std::cerr << ((rval >= 0) ? "OK:" : bladerf_strerror(rval)) << ':' << finame << ':' << line << ':'
<< funcname << ':' << fname;
doPrint(std::cerr, args...);
}
return rval;
}
// only macros can pass a func name string
#define blade_check(func, ...) exec_and_check(func, #func, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#pragma pack(push, 1)
using blade_sample_type = std::complex<int16_t>;
enum class blade_speed_buffer_type { HS, SS };
template <blade_speed_buffer_type T> struct blade_usb_message {
uint32_t reserved;
uint64_t ts;
uint32_t meta_flags;
blade_sample_type d[(T == blade_speed_buffer_type::SS ? 512 : 256) - 4];
};
static_assert(sizeof(blade_usb_message<blade_speed_buffer_type::SS>) == 2048, "blade buffer mismatch!");
static_assert(sizeof(blade_usb_message<blade_speed_buffer_type::HS>) == 1024, "blade buffer mismatch!");
template <unsigned int SZ, blade_speed_buffer_type T> struct blade_otw_buffer {
static_assert((SZ >= 2 && !(SZ % 2)), "min size is 2x usb buffer!");
blade_usb_message<T> m[SZ];
int actual_samples_per_msg()
{
return sizeof(blade_usb_message<T>::d) / sizeof(typeof(blade_usb_message<T>::d[0]));
}
int actual_samples_per_buffer()
{
return SZ * actual_samples_per_msg();
}
int samples_per_buffer()
{
return SZ * sizeof(blade_usb_message<T>) / sizeof(typeof(blade_usb_message<T>::d[0]));
}
int num_msgs_per_buffer()
{
return SZ;
}
auto get_first_ts()
{
return m[0].ts;
}
constexpr auto *getsampleoffset(int ofs)
{
auto full = ofs / actual_samples_per_msg();
auto rem = ofs % actual_samples_per_msg();
return &m[full].d[rem];
}
int readall(blade_sample_type *outaddr)
{
blade_sample_type *addr = outaddr;
for (int i = 0; i < SZ; i++) {
memcpy(addr, &m[i].d[0], actual_samples_per_msg() * sizeof(blade_sample_type));
addr += actual_samples_per_msg();
}
return actual_samples_per_buffer();
}
int read_n(blade_sample_type *outaddr, int start, int num)
{
assert((start + num) <= actual_samples_per_buffer());
assert(start >= 0);
if (!num)
return 0;
// which buffer?
int start_buf_idx = (start > 0) ? start / actual_samples_per_msg() : 0;
// offset from actual buffer start
auto start_offset_in_buf = (start - (start_buf_idx * actual_samples_per_msg()));
auto samp_rem_in_first_buf = actual_samples_per_msg() - start_offset_in_buf;
auto remaining_first_buf = num > samp_rem_in_first_buf ? samp_rem_in_first_buf : num;
memcpy(outaddr, &m[start_buf_idx].d[start_offset_in_buf],
remaining_first_buf * sizeof(blade_sample_type));
outaddr += remaining_first_buf;
auto remaining = num - remaining_first_buf;
if (!remaining)
return num;
start_buf_idx++;
auto rem_full_bufs = remaining / actual_samples_per_msg();
remaining -= rem_full_bufs * actual_samples_per_msg();
for (int i = 0; i < rem_full_bufs; i++) {
memcpy(outaddr, &m[start_buf_idx++].d[0], actual_samples_per_msg() * sizeof(blade_sample_type));
outaddr += actual_samples_per_msg();
}
if (remaining)
memcpy(outaddr, &m[start_buf_idx].d[0], remaining * sizeof(blade_sample_type));
return num;
}
int write_n_burst(blade_sample_type *in, int num, uint64_t first_ts)
{
assert(num <= actual_samples_per_buffer());
int len_rem = num;
for (int i = 0; i < SZ; i++) {
m[i] = {};
m[i].ts = first_ts + i * actual_samples_per_msg();
if (len_rem) {
int max_to_copy =
len_rem > actual_samples_per_msg() ? actual_samples_per_msg() : len_rem;
memcpy(&m[i].d[0], in, max_to_copy * sizeof(blade_sample_type));
len_rem -= max_to_copy;
in += actual_samples_per_msg();
}
}
return num;
}
};
#pragma pack(pop)
template <unsigned int SZ, blade_speed_buffer_type T> struct blade_otw_buffer_helper {
static_assert((SZ >= 1024 && ((SZ & (SZ - 1)) == 0)), "only buffer size multiples of 1024 allowed!");
static blade_otw_buffer<SZ / 512, T> x;
};
using dev_buf_t = typeof(blade_otw_buffer_helper<BLADE_BUFFER_SIZE, blade_speed_buffer_type::SS>::x);
// using buf_in_use = blade_otw_buffer<2, blade_speed_buffer_type::SS>;
using bh_fn_t = std::function<int(dev_buf_t *)>;
template <typename T> struct blade_hw {
struct bladerf *dev;
struct bladerf_stream *rx_stream;
struct bladerf_stream *tx_stream;
// using pkt2buf = blade_otw_buffer<2, blade_speed_buffer_type::SS>;
using tx_buf_q_type = spsc_cond<BLADE_NUM_BUFFERS, dev_buf_t *, true, false>;
const unsigned int rxFullScale, txFullScale;
const int rxtxdelay;
float rxgain, txgain;
struct ms_trx_config {
int tx_freq;
int rx_freq;
int sample_rate;
int bandwidth;
public:
ms_trx_config() : tx_freq(881e6), rx_freq(926e6), sample_rate(((1625e3 / 6) * 4)), bandwidth(1e6)
{
}
} cfg;
struct buf_mgmt {
void **rx_samples;
void **tx_samples;
tx_buf_q_type bufptrqueue;
} buf_mgmt;
virtual ~blade_hw()
{
close_device();
}
blade_hw() : rxFullScale(2047), txFullScale(2047), rxtxdelay(-60)
{
}
void close_device()
{
if (dev) {
if (rx_stream) {
bladerf_deinit_stream(rx_stream);
}
if (tx_stream) {
bladerf_deinit_stream(tx_stream);
}
bladerf_enable_module(dev, BLADERF_MODULE_RX, false);
bladerf_enable_module(dev, BLADERF_MODULE_TX, false);
bladerf_close(dev);
dev = NULL;
}
}
int init_device(bh_fn_t rxh, bh_fn_t txh)
{
struct bladerf_rational_rate rate = { 0, static_cast<uint64_t>((1625e3 * 4)) * 64, 6 * 64 }, actual;
bladerf_log_set_verbosity(BLADERF_LOG_LEVEL_DEBUG);
bladerf_set_usb_reset_on_open(true);
blade_check(bladerf_open, &dev, "");
if (!dev) {
std::cerr << "open failed, device missing?" << std::endl;
exit(0);
}
if (bladerf_device_speed(dev) != bladerf_dev_speed::BLADERF_DEVICE_SPEED_SUPER) {
std::cerr << "open failed, only superspeed (usb3) supported!" << std::endl;
return -1;
}
blade_check(bladerf_set_tuning_mode, dev, bladerf_tuning_mode::BLADERF_TUNING_MODE_FPGA);
bool is_locked;
blade_check(bladerf_set_pll_enable, dev, true);
blade_check(bladerf_set_pll_refclk, dev, 10000000UL);
for (int i = 0; i < 20; i++) {
usleep(50 * 1000);
bladerf_get_pll_lock_state(dev, &is_locked);
if (is_locked)
break;
}
if (!is_locked) {
std::cerr << "unable to lock refclk!" << std::endl;
return -1;
}
// bladerf_sample_rate r = (1625e3 * 4)/6, act;
// blade_check(bladerf_set_sample_rate,dev, BLADERF_CHANNEL_RX(0), r, &act);
// blade_check(bladerf_set_sample_rate,dev, BLADERF_CHANNEL_TX(0), r, &act);
// auto ratrate = (1625e3 * 4) / 6;
// rate.integer = (uint32_t)ratrate;
// rate.den = 10000;
// rate.num = (ratrate - rate.integer) * rate.den;
blade_check(bladerf_set_rational_sample_rate, dev, BLADERF_CHANNEL_RX(0), &rate, &actual);
blade_check(bladerf_set_rational_sample_rate, dev, BLADERF_CHANNEL_TX(0), &rate, &actual);
blade_check(bladerf_set_frequency, dev, BLADERF_CHANNEL_RX(0), (bladerf_frequency)cfg.rx_freq);
blade_check(bladerf_set_frequency, dev, BLADERF_CHANNEL_TX(0), (bladerf_frequency)cfg.tx_freq);
blade_check(bladerf_set_bandwidth, dev, BLADERF_CHANNEL_RX(0), (bladerf_bandwidth)cfg.bandwidth,
(bladerf_bandwidth *)NULL);
blade_check(bladerf_set_bandwidth, dev, BLADERF_CHANNEL_TX(0), (bladerf_bandwidth)cfg.bandwidth,
(bladerf_bandwidth *)NULL);
blade_check(bladerf_set_gain_mode, dev, BLADERF_CHANNEL_RX(0), BLADERF_GAIN_MGC);
// blade_check(bladerf_set_gain, dev, BLADERF_CHANNEL_RX(0), (bladerf_gain)30);
// blade_check(bladerf_set_gain, dev, BLADERF_CHANNEL_TX(0), (bladerf_gain)50);
usleep(1000);
blade_check(bladerf_enable_module, dev, BLADERF_MODULE_RX, true);
usleep(1000);
blade_check(bladerf_enable_module, dev, BLADERF_MODULE_TX, true);
usleep(1000);
blade_check(bladerf_init_stream, &rx_stream, dev, getrxcb(rxh), &buf_mgmt.rx_samples, BLADE_NUM_BUFFERS,
BLADERF_FORMAT_SC16_Q11_META, BLADE_BUFFER_SIZE, NUM_TRANSFERS, (void *)this);
blade_check(bladerf_init_stream, &tx_stream, dev, gettxcb(txh), &buf_mgmt.tx_samples, BLADE_NUM_BUFFERS,
BLADERF_FORMAT_SC16_Q11_META, BLADE_BUFFER_SIZE, NUM_TRANSFERS, (void *)this);
for (int i = 0; i < BLADE_NUM_BUFFERS; i++) {
auto cur_buffer = reinterpret_cast<tx_buf_q_type::elem_t *>(buf_mgmt.tx_samples);
buf_mgmt.bufptrqueue.spsc_push(&cur_buffer[i]);
}
setRxGain(20);
setTxGain(30);
usleep(1000);
// bladerf_set_stream_timeout(dev, BLADERF_TX, 4);
// bladerf_set_stream_timeout(dev, BLADERF_RX, 4);
return 0;
}
bool tuneTx(double freq, size_t chan = 0)
{
msleep(15);
blade_check(bladerf_set_frequency, dev, BLADERF_CHANNEL_TX(0), (bladerf_frequency)freq);
msleep(15);
return true;
};
bool tuneRx(double freq, size_t chan = 0)
{
msleep(15);
blade_check(bladerf_set_frequency, dev, BLADERF_CHANNEL_RX(0), (bladerf_frequency)freq);
msleep(15);
return true;
};
bool tuneRxOffset(double offset, size_t chan = 0)
{
return true;
};
double setRxGain(double dB, size_t chan = 0)
{
rxgain = dB;
msleep(15);
blade_check(bladerf_set_gain, dev, BLADERF_CHANNEL_RX(0), (bladerf_gain)dB);
msleep(15);
return dB;
};
double setTxGain(double dB, size_t chan = 0)
{
txgain = dB;
msleep(15);
blade_check(bladerf_set_gain, dev, BLADERF_CHANNEL_TX(0), (bladerf_gain)dB);
msleep(15);
return dB;
};
int setPowerAttenuation(int atten, size_t chan = 0)
{
return atten;
};
static void check_timestamp(dev_buf_t *rcd)
{
static bool first = true;
static uint64_t last_ts;
if (first) {
first = false;
last_ts = rcd->m[0].ts;
} else if (last_ts + rcd->actual_samples_per_buffer() != rcd->m[0].ts) {
std::cerr << "RX Overrun!" << last_ts << " " << rcd->actual_samples_per_buffer() << " "
<< last_ts + rcd->actual_samples_per_buffer() << " " << rcd->m[0].ts << std::endl;
last_ts = rcd->m[0].ts;
} else {
last_ts = rcd->m[0].ts;
}
}
bladerf_stream_cb getrxcb(bh_fn_t rxbh)
{
// C cb -> no capture!
static auto rxbhfn = rxbh;
return [](struct bladerf *dev, struct bladerf_stream *stream, struct bladerf_metadata *meta,
void *samples, size_t num_samples, void *user_data) -> void * {
// struct blade_hw *trx = (struct blade_hw *)user_data;
static int to_skip = 0;
dev_buf_t *rcd = (dev_buf_t *)samples;
if (to_skip < 120) // prevents weird overflows on startup
to_skip++;
else {
check_timestamp(rcd);
rxbhfn(rcd);
}
return samples;
};
}
bladerf_stream_cb gettxcb(bh_fn_t txbh)
{
// C cb -> no capture!
static auto txbhfn = txbh;
return [](struct bladerf *dev, struct bladerf_stream *stream, struct bladerf_metadata *meta,
void *samples, size_t num_samples, void *user_data) -> void * {
struct blade_hw *trx = (struct blade_hw *)user_data;
auto ptr = reinterpret_cast<tx_buf_q_type::elem_t>(samples);
if (samples) // put buffer address back into queue, ready to be reused
trx->buf_mgmt.bufptrqueue.spsc_push(&ptr);
return BLADERF_STREAM_NO_DATA;
};
}
auto get_rx_burst_handler_fn(bh_fn_t burst_handler)
{
auto fn = [this] {
int status;
set_name_aff_sched("rxrun", 2, SCHED_FIFO, sched_get_priority_max(SCHED_FIFO) - 2);
status = bladerf_stream(rx_stream, BLADERF_RX_X1);
if (status < 0)
std::cerr << "rx stream error! " << bladerf_strerror(status) << std::endl;
return NULL;
};
return fn;
}
auto get_tx_burst_handler_fn(bh_fn_t burst_handler)
{
auto fn = [this] {
int status;
set_name_aff_sched("txrun", 2, SCHED_FIFO, sched_get_priority_max(SCHED_FIFO) - 1);
status = bladerf_stream(tx_stream, BLADERF_TX_X1);
if (status < 0)
std::cerr << "rx stream error! " << bladerf_strerror(status) << std::endl;
return NULL;
};
return fn;
}
void submit_burst_ts(blade_sample_type *buffer, int len, uint64_t ts)
{
//get empty bufer from list
tx_buf_q_type::elem_t rcd;
while (!buf_mgmt.bufptrqueue.spsc_pop(&rcd))
buf_mgmt.bufptrqueue.spsc_prep_pop();
assert(rcd != nullptr);
rcd->write_n_burst(buffer, len, ts + rxtxdelay); // blade xa4 specific delay!
// blade_check(bladerf_submit_stream_buffer_nb, tx_stream, (void *)rcd, 100U);
blade_check(bladerf_submit_stream_buffer_nb, tx_stream, (void *)rcd);
}
void set_name_aff_sched(const char *name, int cpunum, int schedtype, int prio)
{
pthread_setname_np(pthread_self(), name);
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(cpunum, &cpuset);
auto rv = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
if (rv < 0) {
std::cerr << name << " affinity: errreur! " << std::strerror(errno);
return exit(0);
}
sched_param sch_params;
sch_params.sched_priority = prio;
rv = pthread_setschedparam(pthread_self(), schedtype, &sch_params);
if (rv < 0) {
std::cerr << name << " sched: errreur! " << std::strerror(errno);
return exit(0);
}
}
};

View File

@@ -0,0 +1,259 @@
#pragma once
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <complex>
#include <cstring>
#include <functional>
#include <iostream>
#include <thread>
#include <Timeval.h>
#include <vector>
#include <ipcif.h>
// typedef unsigned long long TIMESTAMP;
using blade_sample_type = std::complex<int16_t>;
const int SAMPLE_SCALE_FACTOR = 1;
struct uhd_buf_wrap {
uint64_t ts;
uint32_t num_samps;
blade_sample_type *buf;
auto actual_samples_per_buffer()
{
return num_samps;
}
long get_first_ts()
{
return ts; //md->time_spec.to_ticks(rxticks);
}
int readall(blade_sample_type *outaddr)
{
memcpy(outaddr, buf, num_samps * sizeof(blade_sample_type));
return num_samps;
}
int read_n(blade_sample_type *outaddr, int start, int num)
{
// assert(start >= 0);
auto to_read = std::min((int)num_samps - start, num);
// assert(to_read >= 0);
memcpy(outaddr, buf + start, to_read * sizeof(blade_sample_type));
return to_read;
}
};
using dev_buf_t = uhd_buf_wrap;
using bh_fn_t = std::function<int(dev_buf_t *)>;
template <typename T> struct ipc_hw {
// uhd::usrp::multi_usrp::sptr dev;
// uhd::rx_streamer::sptr rx_stream;
// uhd::tx_streamer::sptr tx_stream;
blade_sample_type *one_pkt_buf;
std::vector<blade_sample_type *> pkt_ptrs;
size_t rx_spp;
double rxticks;
const unsigned int rxFullScale, txFullScale;
const int rxtxdelay;
float rxgain, txgain;
trxmsif m;
virtual ~ipc_hw()
{
delete[] one_pkt_buf;
}
ipc_hw() : rxFullScale(32767), txFullScale(32767), rxtxdelay(-67)
{
}
bool tuneTx(double freq, size_t chan = 0)
{
msleep(25);
// dev->set_tx_freq(freq, chan);
msleep(25);
return true;
};
bool tuneRx(double freq, size_t chan = 0)
{
msleep(25);
// dev->set_rx_freq(freq, chan);
msleep(25);
return true;
};
bool tuneRxOffset(double offset, size_t chan = 0)
{
return true;
};
double setRxGain(double dB, size_t chan = 0)
{
rxgain = dB;
msleep(25);
// dev->set_rx_gain(dB, chan);
msleep(25);
return dB;
};
double setTxGain(double dB, size_t chan = 0)
{
txgain = dB;
msleep(25);
// dev->set_tx_gain(dB, chan);
msleep(25);
return dB;
};
int setPowerAttenuation(int atten, size_t chan = 0)
{
return atten;
};
int init_device(bh_fn_t rxh, bh_fn_t txh)
{
// std::thread([] {
// osmo_ctx_init("bernd");
// osmo_select_init();
// main_ipc();
// while (true)
// osmo_select_main(0);
// }).detach();
return m.connect() ? 0: -1;
}
void *rx_cb(bh_fn_t burst_handler)
{
void *ret;
static int to_skip = 0;
blade_sample_type pbuf[508 * 2];
uint64_t t;
int len = 508 * 2;
m.read_dl(508 * 2, &t, pbuf);
// auto len = ipc_shm_read(ios_tx_to_device[0], (uint16_t *)&pbuf, 508 * 2, &t, 1);
// if(len < 0) {
// std::cerr << "fuck, rx fail!" << std::endl;
// exit(0);
// }
// uhd::rx_metadata_t md;
// auto num_rx_samps = rx_stream->recv(pkt_ptrs.front(), rx_spp, md, 3.0, true);
// if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) {
// std::cerr << boost::format("Timeout while streaming") << std::endl;
// exit(0);
// }
// if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) {
// std::cerr << boost::format("Got an overflow indication. Please consider the following:\n"
// " Your write medium must sustain a rate of %fMB/s.\n"
// " Dropped samples will not be written to the file.\n"
// " Please modify this example for your purposes.\n"
// " This message will not appear again.\n") %
// 1.f;
// exit(0);
// ;
// }
// if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
// std::cerr << str(boost::format("Receiver error: %s") % md.strerror());
// exit(0);
// }
dev_buf_t rcd = { t, static_cast<uint32_t>(len), pbuf };
if (to_skip < 120) // prevents weird overflows on startup
to_skip++;
else {
burst_handler(&rcd);
}
return ret;
}
auto get_rx_burst_handler_fn(bh_fn_t burst_handler)
{
auto fn = [this, burst_handler] {
pthread_setname_np(pthread_self(), "rxrun");
// wait_for_shm_open();
// uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
// stream_cmd.stream_now = true;
// stream_cmd.time_spec = uhd::time_spec_t();
// rx_stream->issue_stream_cmd(stream_cmd);
while (1) {
rx_cb(burst_handler);
}
};
return fn;
}
auto get_tx_burst_handler_fn(bh_fn_t burst_handler)
{
auto fn = [] {
// wait_for_shm_open();
// dummy
};
return fn;
}
void submit_burst_ts(blade_sample_type *buffer, int len, uint64_t ts)
{
// uhd::tx_metadata_t m = {};
// m.end_of_burst = true;
// m.start_of_burst = true;
// m.has_time_spec = true;
// m.time_spec = m.time_spec.from_ticks(ts + rxtxdelay, rxticks); // uhd specific b210 delay!
// std::vector<void *> ptrs(1, buffer);
// tx_stream->send(ptrs, len, m);
// uhd::async_metadata_t async_md;
// bool tx_ack = false;
// while (!tx_ack && tx_stream->recv_async_msg(async_md)) {
// tx_ack = (async_md.event_code == uhd::async_metadata_t::EVENT_CODE_BURST_ACK);
// }
// std::cout << (tx_ack ? "yay" : "nay") << " " << async_md.time_spec.to_ticks(rxticks) << std::endl;
}
void set_name_aff_sched(const char *name, int cpunum, int schedtype, int prio)
{
pthread_setname_np(pthread_self(), name);
// cpu_set_t cpuset;
// CPU_ZERO(&cpuset);
// CPU_SET(cpunum, &cpuset);
// auto rv = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
// if (rv < 0) {
// std::cerr << name << " affinity: errreur! " << std::strerror(errno);
// return exit(0);
// }
// sched_param sch_params;
// sch_params.sched_priority = prio;
// rv = pthread_setschedparam(pthread_self(), schedtype, &sch_params);
// if (rv < 0) {
// std::cerr << name << " sched: errreur! " << std::strerror(errno);
// return exit(0);
// }
}
};

473
Transceiver52M/ms/ipcif.c Normal file
View File

@@ -0,0 +1,473 @@
/*
* Copyright 2020 sysmocom - s.f.m.c. GmbH <info@sysmocom.de>
* Author: Pau Espin Pedrol <pespin@sysmocom.de>
*
* SPDX-License-Identifier: 0BSD
*
* Permission to use, copy, modify, and/or distribute this software for any purpose
* with or without fee is hereby granted.THE SOFTWARE IS PROVIDED "AS IS" AND THE
* AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
* BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
* CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
* USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#define _GNU_SOURCE
#include <pthread.h>
#include <debug.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <sys/stat.h> /* For mode constants */
#include <fcntl.h> /* For O_* constants */
#include <osmocom/core/application.h>
#include <osmocom/core/talloc.h>
#include <osmocom/core/select.h>
#include <osmocom/core/socket.h>
#include <osmocom/core/logging.h>
#include <osmocom/core/utils.h>
#include <osmocom/core/msgb.h>
#include <osmocom/core/select.h>
#include <osmocom/core/timer.h>
#include <shm.h>
#include <ipc_shm.h>
#include <ipc_chan.h>
#include <ipc_sock.h>
#define DEFAULT_SHM_NAME "/osmo-trx-ipc-driver-shm2"
#define IPC_SOCK_PATH_PREFIX "/tmp"
static void *tall_ctx;
struct ipc_sock_state *global_ipc_sock_state;
/* 8 channels are plenty */
struct ipc_sock_state *global_ctrl_socks[8];
struct ipc_shm_io *ios_tx_to_device[8];
struct ipc_shm_io *ios_rx_from_device[8];
void *shm;
// void *global_dev;
static pthread_mutex_t wait_open_lock;
static pthread_cond_t wait_open_cond;
static struct ipc_shm_region *decoded_region;
static struct {
int msocknum;
char *ud_prefix_dir;
} cmdline_cfg = { 1, IPC_SOCK_PATH_PREFIX };
static const struct log_info_cat default_categories[] = {
[DMAIN] = {
.name = "DMAIN",
.color = NULL,
.description = "Main generic category",
.loglevel = LOGL_DEBUG,.enabled = 1,
},
[DDEV] = {
.name = "DDEV",
.description = "Device/Driver specific code",
.color = NULL,
.enabled = 1, .loglevel = LOGL_DEBUG,
},
};
const struct log_info log_infox = {
.cat = default_categories,
.num_cat = ARRAY_SIZE(default_categories),
};
volatile int ipc_exit_requested = 0;
static int ipc_shm_setup(const char *shm_name, size_t shm_len)
{
int fd;
int rc;
LOGP(DMAIN, LOGL_NOTICE, "Opening shm path %s\n", shm_name);
if ((fd = shm_open(shm_name, O_CREAT | O_RDWR | O_TRUNC, S_IRUSR | S_IWUSR)) < 0) {
LOGP(DMAIN, LOGL_ERROR, "shm_open %d: %s\n", errno, strerror(errno));
rc = -errno;
goto err_shm_open;
}
LOGP(DMAIN, LOGL_NOTICE, "Truncating %d to size %zu\n", fd, shm_len);
if (ftruncate(fd, shm_len) < 0) {
LOGP(DMAIN, LOGL_ERROR, "ftruncate %d: %s\n", errno, strerror(errno));
rc = -errno;
goto err_mmap;
}
LOGP(DMAIN, LOGL_NOTICE, "mmaping shared memory fd %d\n", fd);
if ((shm = mmap(NULL, shm_len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0)) == MAP_FAILED) {
LOGP(DMAIN, LOGL_ERROR, "mmap %d: %s\n", errno, strerror(errno));
rc = -errno;
goto err_mmap;
}
LOGP(DMAIN, LOGL_NOTICE, "mmap'ed shared memory at addr %p\n", shm);
/* After a call to mmap(2) the file descriptor may be closed without affecting the memory mapping. */
close(fd);
return 0;
err_mmap:
shm_unlink(shm_name);
close(fd);
err_shm_open:
return rc;
}
struct msgb *ipc_msgb_alloc(uint8_t msg_type)
{
struct msgb *msg;
struct ipc_sk_if *ipc_prim;
msg = msgb_alloc(sizeof(struct ipc_sk_if) + 1000, "ipc_sock_tx");
if (!msg)
return NULL;
msgb_put(msg, sizeof(struct ipc_sk_if) + 1000);
ipc_prim = (struct ipc_sk_if *)msg->data;
ipc_prim->msg_type = msg_type;
return msg;
}
static int ipc_tx_info_cnf()
{
struct msgb *msg;
struct ipc_sk_if *ipc_prim;
msg = ipc_msgb_alloc(IPC_IF_MSG_INFO_CNF);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_if *)msg->data;
ipc_prim->u.info_cnf.feature_mask = FEATURE_MASK_CLOCKREF_EXTERNAL;
ipc_prim->u.info_cnf.iq_scaling_val_rx = 1;
ipc_prim->u.info_cnf.iq_scaling_val_tx = 1;
ipc_prim->u.info_cnf.max_num_chans = 1;
OSMO_STRLCPY_ARRAY(ipc_prim->u.info_cnf.dev_desc, "bernd");
struct ipc_sk_if_info_chan *chan_info = ipc_prim->u.info_cnf.chan_info;
OSMO_STRLCPY_ARRAY(chan_info->tx_path[0], "TX/RX");
OSMO_STRLCPY_ARRAY(chan_info->rx_path[0], "RX2");
chan_info->min_rx_gain = 0;
chan_info->max_rx_gain = 60;
chan_info->min_tx_gain = 0;
chan_info->max_tx_gain = 60;
chan_info->nominal_tx_power = 10;
return ipc_sock_send(msg);
}
static int ipc_tx_open_cnf(int rc, uint32_t num_chans, int32_t timingoffset)
{
struct msgb *msg;
struct ipc_sk_if *ipc_prim;
struct ipc_sk_if_open_cnf_chan *chan_info;
unsigned int i;
msg = ipc_msgb_alloc(IPC_IF_MSG_OPEN_CNF);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_if *)msg->data;
ipc_prim->u.open_cnf.return_code = rc;
ipc_prim->u.open_cnf.path_delay = timingoffset; // 6.18462e-5 * 1625e3 / 6;
OSMO_STRLCPY_ARRAY(ipc_prim->u.open_cnf.shm_name, DEFAULT_SHM_NAME);
chan_info = ipc_prim->u.open_cnf.chan_info;
for (i = 0; i < num_chans; i++) {
snprintf(chan_info->chan_ipc_sk_path, sizeof(chan_info->chan_ipc_sk_path), "%s/ipc_sock%d_%d",
cmdline_cfg.ud_prefix_dir, cmdline_cfg.msocknum, i);
/* FIXME: dynamc chan limit, currently 8 */
if (i < 8)
ipc_sock_init(chan_info->chan_ipc_sk_path, &global_ctrl_socks[i], ipc_chan_sock_accept, i);
chan_info++;
}
return ipc_sock_send(msg);
}
int ipc_rx_greeting_req(struct ipc_sk_if_greeting *greeting_req)
{
struct msgb *msg;
struct ipc_sk_if *ipc_prim;
msg = ipc_msgb_alloc(IPC_IF_MSG_GREETING_CNF);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_if *)msg->data;
ipc_prim->u.greeting_cnf.req_version =
greeting_req->req_version == IPC_SOCK_API_VERSION ? IPC_SOCK_API_VERSION : 0;
ipc_sock_send(msg);
return 0;
}
int ipc_rx_info_req(struct ipc_sk_if_info_req *info_req)
{
ipc_tx_info_cnf();
return 0;
}
int ipc_rx_open_req(struct ipc_sk_if_open_req *open_req)
{
/* calculate size needed */
unsigned int len;
unsigned int i;
// global_dev = uhdwrap_open(open_req);
/* b210 packet size is 2040, but our tx size is 2500, so just do *2 */
int shmbuflen = 5000 * 2;
len = ipc_shm_encode_region(NULL, open_req->num_chans, 4, shmbuflen);
/* Here we verify num_chans, rx_path, tx_path, clockref, etc. */
int rc = ipc_shm_setup(DEFAULT_SHM_NAME, len);
len = ipc_shm_encode_region((struct ipc_shm_raw_region *)shm, open_req->num_chans, 4, shmbuflen);
// LOGP(DMAIN, LOGL_NOTICE, "%s\n", osmo_hexdump((const unsigned char *)shm, 80));
/* set up our own copy of the decoded area, we have to do it here,
* since the uhd wrapper does not allow starting single channels
* additionally go for the producer init for both, so only we are responsible for the init, instead
* of splitting it with the client and causing potential races if one side uses it too early */
decoded_region = ipc_shm_decode_region(0, (struct ipc_shm_raw_region *)shm);
for (i = 0; i < open_req->num_chans; i++) {
// ios_tx_to_device[i] = ipc_shm_init_consumer(decoded_region->channels[i]->dl_stream);
ios_tx_to_device[i] = ipc_shm_init_producer(decoded_region->channels[i]->dl_stream);
ios_rx_from_device[i] = ipc_shm_init_producer(decoded_region->channels[i]->ul_stream);
}
ipc_tx_open_cnf(-rc, open_req->num_chans, 0);
return 0;
}
volatile bool ul_running = false;
volatile bool dl_running = false;
void *uplink_thread(void *x_void_ptr)
{
uint32_t chann = decoded_region->num_chans;
ul_running = true;
pthread_setname_np(pthread_self(), "uplink_rx");
while (!ipc_exit_requested) {
// int32_t read = uhdwrap_read(global_dev, chann);
// ipc_shm_enqueue(ios_rx_from_device[i], tstamp, num_rx_samps, (uint16_t *)&d->wrap_rx_buffs[i].front());
if (read < 0)
return 0;
}
return 0;
}
void *downlink_thread(void *x_void_ptr)
{
int chann = decoded_region->num_chans;
dl_running = true;
pthread_setname_np(pthread_self(), "downlink_tx");
while (!ipc_exit_requested) {
bool underrun;
// uhdwrap_write(global_dev, chann, &underrun);
// len = ipc_shm_read(ios_tx_to_device[i], (uint16_t *)&d->wrap_tx_buffs[i].front(), 5000, &timestamp, 1);
// return d->writeSamples(d->wrap_tx_buf_ptrs, len, underrun, timestamp);
}
return 0;
}
int ipc_rx_chan_start_req(struct ipc_sk_chan_if_op_void *req, uint8_t chan_nr)
{
struct msgb *msg;
struct ipc_sk_chan_if *ipc_prim;
int rc = 0;
// rc = uhdwrap_start(global_dev, chan_nr);
pthread_cond_broadcast(&wait_open_cond);
// /* no per-chan start/stop */
// if (!dl_running || !ul_running) {
// /* chan != first chan start will "fail", which is fine, usrp can't start/stop chans independently */
// if (rc) {
// LOGP(DMAIN, LOGL_INFO, "starting rx/tx threads.. req for chan:%d\n", chan_nr);
// pthread_t rx, tx;
// pthread_create(&rx, NULL, uplink_thread, 0);
// pthread_create(&tx, NULL, downlink_thread, 0);
// }
// } else
// LOGP(DMAIN, LOGL_INFO, "starting rx/tx threads request ignored.. req for chan:%d\n", chan_nr);
msg = ipc_msgb_alloc(IPC_IF_MSG_START_CNF);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_chan_if *)msg->data;
ipc_prim->u.start_cnf.return_code = rc ? 0 : -1;
return ipc_chan_sock_send(msg, chan_nr);
}
int ipc_rx_chan_stop_req(struct ipc_sk_chan_if_op_void *req, uint8_t chan_nr)
{
struct msgb *msg;
struct ipc_sk_chan_if *ipc_prim;
int rc = true;
/* no per-chan start/stop */
// rc = uhdwrap_stop(global_dev, chan_nr);
msg = ipc_msgb_alloc(IPC_IF_MSG_STOP_CNF);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_chan_if *)msg->data;
ipc_prim->u.stop_cnf.return_code = rc ? 0 : -1;
return ipc_chan_sock_send(msg, chan_nr);
}
int ipc_rx_chan_setgain_req(struct ipc_sk_chan_if_gain *req, uint8_t chan_nr)
{
struct msgb *msg;
struct ipc_sk_chan_if *ipc_prim;
double rv = req->gain;
// rv = uhdwrap_set_gain(global_dev, req->gain, chan_nr, req->is_tx);
msg = ipc_msgb_alloc(IPC_IF_MSG_SETGAIN_CNF);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_chan_if *)msg->data;
ipc_prim->u.set_gain_cnf.is_tx = req->is_tx;
ipc_prim->u.set_gain_cnf.gain = rv;
return ipc_chan_sock_send(msg, chan_nr);
}
int ipc_rx_chan_setfreq_req(struct ipc_sk_chan_if_freq_req *req, uint8_t chan_nr)
{
struct msgb *msg;
struct ipc_sk_chan_if *ipc_prim;
bool rv = true;
// rv = uhdwrap_set_freq(global_dev, req->freq, chan_nr, req->is_tx);
msg = ipc_msgb_alloc(IPC_IF_MSG_SETFREQ_CNF);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_chan_if *)msg->data;
ipc_prim->u.set_freq_cnf.return_code = rv ? 0 : 1;
return ipc_chan_sock_send(msg, chan_nr);
}
int ipc_rx_chan_settxatten_req(struct ipc_sk_chan_if_tx_attenuation *req, uint8_t chan_nr)
{
struct msgb *msg;
struct ipc_sk_chan_if *ipc_prim;
double rv = req->attenuation;
// rv = uhdwrap_set_txatt(global_dev, req->attenuation, chan_nr);
msg = ipc_msgb_alloc(IPC_IF_MSG_SETTXATTN_CNF);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_chan_if *)msg->data;
ipc_prim->u.txatten_cnf.attenuation = rv;
return ipc_chan_sock_send(msg, chan_nr);
}
int ipc_sock_init(const char *path, struct ipc_sock_state **global_state_var,
int (*sock_callback_fn)(struct osmo_fd *fd, unsigned int what), int n)
{
struct ipc_sock_state *state;
struct osmo_fd *bfd;
int rc;
state = talloc_zero(NULL, struct ipc_sock_state);
if (!state)
return -ENOMEM;
*global_state_var = state;
INIT_LLIST_HEAD(&state->upqueue);
state->conn_bfd.fd = -1;
bfd = &state->listen_bfd;
bfd->fd = osmo_sock_unix_init(SOCK_SEQPACKET, 0, path, OSMO_SOCK_F_BIND);
if (bfd->fd < 0) {
LOGP(DMAIN, LOGL_ERROR, "Could not create %s unix socket: %s\n", path, strerror(errno));
talloc_free(state);
return -1;
}
osmo_fd_setup(bfd, bfd->fd, OSMO_FD_READ, sock_callback_fn, state, n);
rc = osmo_fd_register(bfd);
if (rc < 0) {
LOGP(DMAIN, LOGL_ERROR, "Could not register listen fd: %d\n", rc);
close(bfd->fd);
talloc_free(state);
return rc;
}
LOGP(DMAIN, LOGL_INFO, "Started listening on IPC socket: %s\n", path);
return 0;
}
int main_ipc()
{
char *ipc_msock_path = "/tmp/ipc_sock1";
tall_ctx = talloc_named_const(NULL, 0, "trx-ipc-ms");
msgb_talloc_ctx_init(tall_ctx, 0);
osmo_init_logging2(tall_ctx, &log_infox);
log_enable_multithread();
LOGP(DMAIN, LOGL_INFO, "Starting %s\n", "bernd");
ipc_sock_init(ipc_msock_path, &global_ipc_sock_state, ipc_sock_accept, 0);
// while (!ipc_exit_requested)
// osmo_select_main(0);
// if (global_dev) {
// unsigned int i;
// for (i = 0; i < decoded_region->num_chans; i++)
// uhdwrap_stop(global_dev, i);
// }
// ipc_sock_close(global_ipc_sock_state);
int rv;
pthread_condattr_t t2;
rv = pthread_condattr_setpshared(&t2, PTHREAD_PROCESS_SHARED);
rv = pthread_cond_init(&wait_open_cond, &t2);
return 0;
}
int wait_for_shm_open()
{
struct timespec tv;
int rv;
clock_gettime(CLOCK_REALTIME, &tv);
tv.tv_sec += 15;
rv = pthread_mutex_timedlock(&wait_open_lock, &tv);
if (rv != 0)
return -rv;
rv = pthread_cond_timedwait(&wait_open_cond, &wait_open_lock, &tv);
return rv;
}

View File

@@ -0,0 +1,227 @@
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <radioInterface.h>
#include "ms_rx_upper.h"
#include "syncthing.h"
void upper_trx::driveControl()
{
#ifdef IPCIF
auto m = pop_c();
if (!m)
return;
#else
TRX_C cmd;
socklen_t addr_len = sizeof(ctrlsrc);
int rdln = recvfrom(mCtrlSockets, (void *)cmd.cmd, sizeof(cmd) - 1, 0, &ctrlsrc, &addr_len);
if (rdln < 0 && errno == EAGAIN) {
std::cerr << "fuck, send ctrl?" << std::endl;
exit(0);
}
TRX_C *m = &cmd;
#endif
auto response = (TRX_C *)malloc(sizeof(TRX_C));
response->cmd[0] = '\0';
commandhandler(m->cmd, response->cmd);
#ifdef IPCIF
free(m);
#endif
std::clog << "response is " << response->cmd << std::endl;
#ifdef IPCIF
push_c(response);
#else
int rv = sendto(mCtrlSockets, response, strlen(response->cmd) + 1, 0, &ctrlsrc, sizeof(struct sockaddr_in));
if (rv < 0) {
std::cerr << "fuck, rcv ctrl?" << std::endl;
exit(0);
}
free(response);
#endif
}
void upper_trx::commandhandler(char *buffer, char *response)
{
int MAX_PACKET_LENGTH = TRXC_BUF_SIZE;
char cmdcheck[4];
char command[MAX_PACKET_LENGTH];
sscanf(buffer, "%3s %s", cmdcheck, command);
if (strcmp(cmdcheck, "CMD") != 0) {
LOG(WARNING) << "bogus message on control interface";
return;
}
std::clog << "command is " << buffer << std::endl << std::flush;
if (strcmp(command, "MEASURE") == 0) {
msleep(100);
int freq;
sscanf(buffer, "%3s %s %d", cmdcheck, command, &freq);
sprintf(response, "RSP MEASURE 0 %d -80", freq);
} else if (strcmp(command, "ECHO") == 0) {
msleep(100);
sprintf(response, "RSP ECHO 0");
} else if (strcmp(command, "POWEROFF") == 0) {
set_ta(0);
// turn off transmitter/demod
// set_upper_ready(false);
sprintf(response, "RSP POWEROFF 0");
} else if (strcmp(command, "POWERON") == 0) {
// turn on transmitter/demod
if (!mTxFreq || !mRxFreq)
sprintf(response, "RSP POWERON 1");
else {
sprintf(response, "RSP POWERON 0");
if (!mOn) {
// Prepare for thread start
mPower = -20;
// start_ms();
set_upper_ready(true);
writeClockInterface();
mOn = true;
}
}
} else if (strcmp(command, "SETMAXDLY") == 0) {
//set expected maximum time-of-arrival
int maxDelay;
sscanf(buffer, "%3s %s %d", cmdcheck, command, &maxDelay);
mMaxExpectedDelay = maxDelay; // 1 GSM symbol is approx. 1 km
sprintf(response, "RSP SETMAXDLY 0 %d", maxDelay);
} else if (strcmp(command, "SETRXGAIN") == 0) {
//set expected maximum time-of-arrival
int newGain;
sscanf(buffer, "%3s %s %d", cmdcheck, command, &newGain);
newGain = setRxGain(newGain);
sprintf(response, "RSP SETRXGAIN 0 %d", newGain);
} else if (strcmp(command, "NOISELEV") == 0) {
if (mOn) {
float lev = 0; //mStates[chan].mNoiseLev;
sprintf(response, "RSP NOISELEV 0 %d", (int)round(20.0 * log10(rxFullScale / lev)));
} else {
sprintf(response, "RSP NOISELEV 1 0");
}
} else if (!strcmp(command, "SETPOWER")) {
// set output power in dB
int dbPwr;
sscanf(buffer, "%3s %s %d", cmdcheck, command, &dbPwr);
if (!mOn)
sprintf(response, "RSP SETPOWER 1 %d", dbPwr);
else {
mPower = dbPwr;
setPowerAttenuation(mPower);
sprintf(response, "RSP SETPOWER 0 %d", dbPwr);
}
} else if (!strcmp(command, "ADJPOWER")) {
// adjust power in dB steps
int dbStep;
sscanf(buffer, "%3s %s %d", cmdcheck, command, &dbStep);
if (!mOn)
sprintf(response, "RSP ADJPOWER 1 %d", mPower);
else {
mPower += dbStep;
setPowerAttenuation(mPower);
sprintf(response, "RSP ADJPOWER 0 %d", mPower);
}
} else if (strcmp(command, "RXTUNE") == 0) {
// tune receiver
int freqKhz;
sscanf(buffer, "%3s %s %d", cmdcheck, command, &freqKhz);
mRxFreq = freqKhz * 1e3;
if (!tuneRx(mRxFreq)) {
LOG(ALERT) << "RX failed to tune";
sprintf(response, "RSP RXTUNE 1 %d", freqKhz);
} else
sprintf(response, "RSP RXTUNE 0 %d", freqKhz);
} else if (strcmp(command, "TXTUNE") == 0) {
// tune txmtr
int freqKhz;
sscanf(buffer, "%3s %s %d", cmdcheck, command, &freqKhz);
mTxFreq = freqKhz * 1e3;
if (!tuneTx(mTxFreq)) {
LOG(ALERT) << "TX failed to tune";
sprintf(response, "RSP TXTUNE 1 %d", freqKhz);
} else
sprintf(response, "RSP TXTUNE 0 %d", freqKhz);
} else if (!strcmp(command, "SETTSC")) {
// set TSC
unsigned TSC;
sscanf(buffer, "%3s %s %d", cmdcheck, command, &TSC);
if (mOn)
sprintf(response, "RSP SETTSC 1 %d", TSC);
// else if (chan && (TSC != mTSC))
// sprintf(response, "RSP SETTSC 1 %d", TSC);
else {
mTSC = TSC;
//generateMidamble(rx_sps, TSC);
sprintf(response, "RSP SETTSC 0 %d", TSC);
}
} else if (!strcmp(command, "GETBSIC")) {
if (mBSIC < 0)
sprintf(response, "RSP GETBSIC 1");
else
sprintf(response, "RSP GETBSIC 0 %d", mBSIC);
} else if (strcmp(command, "SETSLOT") == 0) {
// set TSC
int corrCode;
int timeslot;
sscanf(buffer, "%3s %s %d %d", cmdcheck, command, &timeslot, &corrCode);
if ((timeslot < 0) || (timeslot > 7)) {
LOG(WARNING) << "bogus message on control interface";
sprintf(response, "RSP SETSLOT 1 %d %d", timeslot, corrCode);
return;
}
sprintf(response, "RSP SETSLOT 0 %d %d", timeslot, corrCode);
} else if (!strcmp(command, "SETRXMASK")) {
int slot;
unsigned long long mask;
sscanf(buffer, "%3s %s %d 0x%llx", cmdcheck, command, &slot, &mask);
if ((slot < 0) || (slot > 7)) {
sprintf(response, "RSP SETRXMASK 1");
} else {
mRxSlotMask[slot] = mask;
sprintf(response, "RSP SETRXMASK 0 %d 0x%llx", slot, mask);
}
} else if (!strcmp(command, "SYNC")) {
// msleep(10);
sprintf(response, "RSP SYNC 0");
mMaxExpectedDelay = 48;
// setRxGain(30);
// msleep(10);
} else if (!strcmp(command, "SETTA")) {
int ta;
sscanf(buffer, "%3s %s %d", cmdcheck, command, &ta);
set_ta(ta);
sprintf(response, "RSP SETTA 0 %d", ta);
} else {
LOG(WARNING) << "bogus command " << command << " on control interface.";
}
//mCtrlSockets[chan]->write(response, strlen(response) + 1);
}

View File

@@ -0,0 +1,211 @@
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "syncthing.h"
#include "sigProcLib.h"
#include "signalVector.h"
#include "grgsm_vitac/grgsm_vitac.h"
extern "C" {
#include "sch.h"
}
#if !defined(SYNCTHINGONLY) || !defined(NODAMNLOG)
#define DBGLG(...) ms_trx::dummy_log()
#else
#define DBGLG(...) std::cerr
#endif
#if !defined(SYNCTHINGONLY)
#define DBGLG2(...) ms_trx::dummy_log()
#else
#define DBGLG2(...) std::cerr
#endif
__attribute__((xray_always_instrument)) __attribute__((noinline)) static bool decode_sch(float *bits,
bool update_global_clock)
{
struct sch_info sch;
ubit_t info[GSM_SCH_INFO_LEN];
sbit_t data[GSM_SCH_CODED_LEN];
float_to_sbit(&bits[3], &data[0], 62, 39);
float_to_sbit(&bits[106], &data[39], 62, 39);
if (!gsm_sch_decode(info, data)) {
gsm_sch_parse(info, &sch);
DBGLG() << "SCH : Decoded values" << std::endl;
DBGLG() << " BSIC: " << sch.bsic << std::endl;
DBGLG() << " TSC: " << (sch.bsic & 0x7) << std::endl;
DBGLG() << " T1 : " << sch.t1 << std::endl;
DBGLG() << " T2 : " << sch.t2 << std::endl;
DBGLG() << " T3p : " << sch.t3p << std::endl;
DBGLG() << " FN : " << gsm_sch_to_fn(&sch) << std::endl;
return true;
}
return false;
}
static void check_rcv_fn(GSM::Time t, bool first, unsigned int &lastfn, unsigned int &fnbm)
{
if (first && t.TN() == 0) {
lastfn = t.FN();
fnbm = 1 << 0;
first = false;
}
if (!first && t.FN() != lastfn) {
if (fnbm != 255)
std::cerr << "rx " << lastfn << ":" << fnbm << " " << __builtin_popcount(fnbm) << std::endl;
lastfn = t.FN();
fnbm = 1 << t.TN();
}
fnbm |= 1 << t.TN();
}
__attribute__((xray_always_instrument)) __attribute__((noinline)) static void
handle_it(one_burst &e, signalVector &burst, unsigned int tsc, int scale)
{
memset(burst.begin(), 0, burst.size() * sizeof(std::complex<float>));
auto is_sch = gsm_sch_check_fn(e.gsmts.FN()) && e.gsmts.TN() == 0;
auto is_fcch = gsm_fcch_check_fn(e.gsmts.FN()) && e.gsmts.TN() == 0;
// if (is_sch)
// return;
if (is_fcch)
return;
if (is_sch) {
unsigned char outbin[148];
convert_and_scale_default<float, int16_t>(burst.begin(), e.burst, ONE_TS_BURST_LEN * 2);
std::stringstream dbgout;
#if 0
{
struct estim_burst_params ebp;
auto rv2 = detectSCHBurst(burst, 4, 4, sch_detect_type::SCH_DETECT_FULL, &ebp);
auto bits = demodAnyBurst(burst, SCH, 4, &ebp);
// clamp_array(bits->begin(), 148, 1.5f);
for (auto &i : *bits)
i = (i > 0 ? 1 : -1);
auto rv = decode_sch(bits->begin(), false);
dbgout << "U DET@" << (rv2 ? "yes " : " ") << "Timing offset " << ebp.toa
<< " symbols, DECODE: " << (rv ? "yes" : "---") << " ";
delete bits;
}
#endif
{
convert_and_scale<float, float>(burst.begin(), burst.begin(), ONE_TS_BURST_LEN * 2,
1.f / float(scale));
std::complex<float> channel_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
auto ss = reinterpret_cast<std::complex<float> *>(burst.begin());
int d_c0_burst_start = get_sch_chan_imp_resp(ss, &channel_imp_resp[0]);
detect_burst(ss, &channel_imp_resp[0], d_c0_burst_start, outbin);
SoftVector bits;
bits.resize(148);
for (int i = 0; i < 148; i++) {
bits[i] = (!outbin[i]) < 1 ? -1 : 1;
}
auto rv = decode_sch(bits.begin(), false);
dbgout << "U SCH@"
<< " " << e.gsmts.FN() << ":" << e.gsmts.TN() << " " << d_c0_burst_start
<< " DECODE:" << (rv ? "yes" : "---") << std::endl;
}
DBGLG() << dbgout.str();
return;
}
#if 1
convert_and_scale<float, int16_t>(burst.begin(), e.burst, ONE_TS_BURST_LEN * 2, 1.f / float(scale));
// std::cerr << "@" << tsc << " " << e.gsmts.FN() << ":" << e.gsmts.TN() << " " << ebp.toa << " "
// << std::endl;
unsigned char outbin[148];
auto ss = reinterpret_cast<std::complex<float> *>(burst.begin());
float ncmax, dcmax;
std::complex<float> chan_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR], chan_imp_resp2[CHAN_IMP_RESP_LENGTH * d_OSR];
auto normal_burst_start = get_norm_chan_imp_resp(ss, &chan_imp_resp[0], &ncmax, tsc);
auto dummy_burst_start = get_norm_chan_imp_resp(ss, &chan_imp_resp2[0], &dcmax, TS_DUMMY);
auto is_nb = ncmax > dcmax;
DBGLG() << " U " << (is_nb ? "NB" : "DB") << "@ o nb: " << normal_burst_start << " o db: " << dummy_burst_start
<< std::endl;
if (is_nb)
detect_burst(ss, &chan_imp_resp[0], normal_burst_start, outbin);
else
detect_burst(ss, &chan_imp_resp2[0], dummy_burst_start, outbin);
;
auto bits = SoftVector(148);
for (int i = 0; i < 148; i++)
(bits)[i] = outbin[i] < 1 ? -1 : 1;
#endif
}
__attribute__((xray_always_instrument)) __attribute__((noinline)) void rcv_bursts_test(rx_queue_t *q, unsigned int *tsc, int scale)
{
static bool first = true;
unsigned int lastfn = 0;
unsigned int fnbm = 0;
signalVector burst(ONE_TS_BURST_LEN, 100, 100);
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(1, &cpuset);
auto rv = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
if (rv < 0) {
std::cerr << "affinity: errreur! " << std::strerror(errno);
exit(0);
}
int prio = sched_get_priority_max(SCHED_RR);
struct sched_param param;
param.sched_priority = prio;
rv = sched_setscheduler(0, SCHED_RR, &param);
if (rv < 0) {
std::cerr << "scheduler: errreur! " << std::strerror(errno);
exit(0);
}
while (1) {
one_burst e;
while (!q->spsc_pop(&e)) {
q->spsc_prep_pop();
}
check_rcv_fn(e.gsmts, first, lastfn, fnbm);
handle_it(e, burst, *tsc, scale);
// rv = detectSCHBurst(*burst, 4, 4, sch_detect_type::SCH_DETECT_FULL, &ebp);
// if (rv > 0)
// std::cerr << "#" << e.gsmts.FN() << ":" << e.gsmts.TN() << " " << ebp.toa << std::endl;
// sched_yield();
}
}

View File

@@ -0,0 +1,25 @@
#pragma once
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "syncthing.h"
void rcv_bursts_test(rx_queue_t *q, unsigned int *tsc, int scale);

View File

@@ -0,0 +1,350 @@
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "sigProcLib.h"
#include "signalVector.h"
#include <atomic>
#include <cassert>
#include <complex>
#include <iostream>
#include <future>
#include "syncthing.h"
#include "grgsm_vitac/grgsm_vitac.h"
extern "C" {
#include "sch.h"
}
#ifdef LOG
#undef LOG
#endif
#if !defined(SYNCTHINGONLY) //|| !defined(NODAMNLOG)
#define DBGLG(...) ms_trx::dummy_log()
#else
#define DBGLG(...) std::cerr
#endif
#if !defined(SYNCTHINGONLY) || !defined(NODAMNLOG)
#define DBGLG2(...) ms_trx::dummy_log()
#else
#define DBGLG2(...) std::cerr
#endif
#define PRINT_Q_OVERFLOW
__attribute__((xray_always_instrument)) __attribute__((noinline)) bool ms_trx::decode_sch(float *bits,
bool update_global_clock)
{
int fn;
struct sch_info sch;
ubit_t info[GSM_SCH_INFO_LEN];
sbit_t data[GSM_SCH_CODED_LEN];
float_to_sbit(&bits[3], &data[0], 62, 39);
float_to_sbit(&bits[106], &data[39], 62, 39);
if (!gsm_sch_decode(info, data)) {
gsm_sch_parse(info, &sch);
if (update_global_clock) {
DBGLG() << "SCH : Decoded values" << std::endl;
DBGLG() << " BSIC: " << sch.bsic << std::endl;
DBGLG() << " TSC: " << (sch.bsic & 0x7) << std::endl;
DBGLG() << " T1 : " << sch.t1 << std::endl;
DBGLG() << " T2 : " << sch.t2 << std::endl;
DBGLG() << " T3p : " << sch.t3p << std::endl;
DBGLG() << " FN : " << gsm_sch_to_fn(&sch) << std::endl;
}
fn = gsm_sch_to_fn(&sch);
if (fn < 0) { // how? wh?
DBGLG() << "SCH : Failed to convert FN " << std::endl;
return false;
}
if (update_global_clock) {
mBSIC = sch.bsic;
mTSC = sch.bsic & 0x7;
timekeeper.set(fn, 0);
// global_time_keeper.FN(fn);
// global_time_keeper.TN(0);
}
#ifdef SYNCTHINGONLY
else {
int t3 = sch.t3p * 10 + 1;
if (t3 == 11) {
// timeslot hitter attempt @ fn 21 in mf
DBGLG2() << "sch @ " << t3 << std::endl;
auto e = GSM::Time(fn, 0);
e += 10;
ts_hitter_q.spsc_push(&e);
}
}
#endif
// auto sch11 = gsm_sch_check_fn(fn + 11);
// DBGLG() << "next sch: "<< (sch11 ? "11":"10")<<" first ts " << first_sch_buf_rcv_ts << std::endl;
return true;
}
return false;
}
void ms_trx::maybe_update_gain(one_burst &brst)
{
static_assert((sizeof(brst.burst) / sizeof(brst.burst[0])) == ONE_TS_BURST_LEN, "wtf, buffer size mismatch?");
const int avgburst_num = 8 * 20; // ~ 50*4.5ms = 90ms?
static_assert(avgburst_num * 577 > (50 * 1000), "can't update faster then blade wait time?");
const unsigned int rx_max_cutoff = (rxFullScale * 2) / 3;
static int gain_check = 0;
static float runmean = 0;
float sum = 0;
for (auto i : brst.burst)
sum += abs(i.real()) + abs(i.imag());
sum /= ONE_TS_BURST_LEN * 2;
runmean = gain_check ? (runmean * (gain_check + 2) - 1 + sum) / (gain_check + 2) : sum;
if (gain_check == avgburst_num - 1) {
DBGLG2() << "\x1B[32m #RXG \033[0m" << rxgain << " " << runmean << " " << sum << std::endl;
auto gainoffset = runmean < (rxFullScale / 4 ? 4 : 2);
gainoffset = runmean < (rxFullScale / 2 ? 2 : 1);
float newgain = runmean < rx_max_cutoff ? rxgain + gainoffset : rxgain - gainoffset;
// FIXME: gian cutoff
if (newgain != rxgain && newgain <= 60)
std::thread([this, newgain] { setRxGain(newgain); }).detach();
runmean = 0;
}
gain_check = (gain_check + 1) % avgburst_num;
}
static unsigned char sch_demod_bits[148];
bool ms_trx::handle_sch_or_nb()
{
one_burst brst;
auto current_gsm_time = timekeeper.gsmtime();
auto is_sch = gsm_sch_check_fn(current_gsm_time.FN()) && current_gsm_time.TN() == 0;
auto is_fcch = gsm_fcch_check_fn(current_gsm_time.FN()) && current_gsm_time.TN() == 0;
#pragma unused(is_fcch)
//either pass burst to upper layer for demod, OR pass demodded SCH to upper layer so we don't waste time processing it twice
brst.gsmts = current_gsm_time;
if (!is_sch) {
memcpy(brst.burst, burst_copy_buffer, sizeof(blade_sample_type) * ONE_TS_BURST_LEN);
} else {
handle_sch(false);
memcpy(brst.sch_bits, sch_demod_bits, sizeof(sch_demod_bits));
}
// auto pushok = rxqueue.spsc_push(&brst);
#ifndef SYNCTHINGONLY
if (upper_is_ready) { // this is blocking, so only submit if there is a reader - only if upper exists!
#endif
while (!rxqueue.spsc_push(&brst))
;
#ifndef SYNCTHINGONLY
}
#endif
// #ifdef PRINT_Q_OVERFLOW
// if (!pushok)
// std::cout << "F" << std::endl;
// #endif
if (do_auto_gain)
maybe_update_gain(brst);
return false;
}
static float sch_acq_buffer[SCH_LEN_SPS * 2];
bool ms_trx::handle_sch(bool is_first_sch_acq)
{
auto current_gsm_time = timekeeper.gsmtime();
const auto buf_len = is_first_sch_acq ? SCH_LEN_SPS : ONE_TS_BURST_LEN;
const auto which_in_buffer = is_first_sch_acq ? first_sch_buf : burst_copy_buffer;
const auto which_out_buffer = is_first_sch_acq ? sch_acq_buffer : &sch_acq_buffer[40 * 2];
const auto ss = reinterpret_cast<std::complex<float> *>(which_out_buffer);
std::complex<float> channel_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
float max_corr = 0;
int start;
memset((void *)&sch_acq_buffer[0], 0, sizeof(sch_acq_buffer));
if (is_first_sch_acq) {
convert_and_scale<float, int16_t>(which_out_buffer, which_in_buffer, buf_len * 2,
1.f / float(rxFullScale));
start = get_sch_buffer_chan_imp_resp(ss, &channel_imp_resp[0], buf_len, &max_corr);
detect_burst(&ss[start], &channel_imp_resp[0], 0, sch_demod_bits);
} else {
convert_and_scale<float, int16_t>(which_out_buffer, which_in_buffer, buf_len * 2,
1.f / float(rxFullScale));
start = get_sch_chan_imp_resp(ss, &channel_imp_resp[0]);
start = start < 39 ? start : 39;
start = start > -39 ? start : -39;
detect_burst(&ss[start], &channel_imp_resp[0], 0, sch_demod_bits);
}
SoftVector bitss(148);
for (int i = 0; i < 148; i++) {
bitss[i] = (!sch_demod_bits[i]) < 1 ? -1 : 1;
}
auto sch_decode_success = decode_sch(bitss.begin(), is_first_sch_acq);
if (sch_decode_success) {
const auto ts_offset_symb = 0;
if (is_first_sch_acq) {
// update ts to first sample in sch buffer, to allow delay calc for current ts
first_sch_ts_start = first_sch_buf_rcv_ts + start - (ts_offset_symb * 4) - 1;
} else if (abs(start) > 1) {
// continuous sch tracking, only update if off too much
temp_ts_corr_offset += -start;
std::cerr << "offs: " << start << " " << temp_ts_corr_offset << std::endl;
}
return true;
} else {
DBGLG2() << "L SCH : \x1B[31m decode fail \033[0m @ toa:" << start << " " << current_gsm_time.FN()
<< ":" << current_gsm_time.TN() << std::endl;
}
return false;
}
__attribute__((xray_never_instrument)) SCH_STATE ms_trx::search_for_sch(dev_buf_t *rcd)
{
static unsigned int sch_pos = 0;
if (sch_thread_done)
return SCH_STATE::FOUND;
if (rcv_done)
return SCH_STATE::SEARCHING;
auto to_copy = SCH_LEN_SPS - sch_pos;
if (SCH_LEN_SPS == to_copy) // first time
first_sch_buf_rcv_ts = rcd->get_first_ts();
if (!to_copy) {
sch_pos = 0;
rcv_done = true;
std::thread([this] {
set_name_aff_sched("sch_search", 1, SCHED_FIFO, sched_get_priority_max(SCHED_FIFO) - 5);
auto ptr = reinterpret_cast<const int16_t *>(first_sch_buf);
const auto target_val = rxFullScale / 8;
float sum = 0;
for (int i = 0; i < SCH_LEN_SPS * 2; i++)
sum += std::abs(ptr[i]);
sum /= SCH_LEN_SPS * 2;
//FIXME: arbitrary value, gain cutoff
if (sum > target_val || rxgain >= 60) // enough ?
sch_thread_done = this->handle_sch(true);
else {
std::cerr << "\x1B[32m #RXG \033[0m gain " << rxgain << " -> " << rxgain + 4
<< " sample avg:" << sum << " target: >=" << target_val << std::endl;
setRxGain(rxgain + 4);
}
if (!sch_thread_done)
rcv_done = false; // retry!
return (bool)sch_thread_done;
}).detach();
}
auto spsmax = rcd->actual_samples_per_buffer();
if (to_copy > spsmax)
sch_pos += rcd->readall(first_sch_buf + sch_pos);
else
sch_pos += rcd->read_n(first_sch_buf + sch_pos, 0, to_copy);
return SCH_STATE::SEARCHING;
}
__attribute__((optnone)) void ms_trx::grab_bursts(dev_buf_t *rcd)
{
// partial burst samples read from the last buffer
static int partial_rdofs = 0;
static bool first_call = true;
int to_skip = 0;
// round up to next burst by calculating the time between sch detection and now
if (first_call) {
const auto next_burst_start = rcd->get_first_ts() - first_sch_ts_start;
const auto fullts = next_burst_start / ONE_TS_BURST_LEN;
const auto fracts = next_burst_start % ONE_TS_BURST_LEN;
to_skip = ONE_TS_BURST_LEN - fracts;
for (int i = 0; i < fullts; i++)
timekeeper.inc_and_update(first_sch_ts_start + i * ONE_TS_BURST_LEN);
if (fracts)
timekeeper.inc_both();
// timekeeper.inc_and_update(first_sch_ts_start + 1 * ONE_TS_BURST_LEN);
timekeeper.dec_by_one(); // oops, off by one?
timekeeper.set(timekeeper.gsmtime(), rcd->get_first_ts() - ONE_TS_BURST_LEN + to_skip);
DBGLG() << "this ts: " << rcd->get_first_ts() << " diff full TN: " << fullts << " frac TN: " << fracts
<< " GSM now: " << timekeeper.gsmtime().FN() << ":" << timekeeper.gsmtime().TN() << " is sch? "
<< gsm_sch_check_fn(timekeeper.gsmtime().FN()) << std::endl;
first_call = false;
}
if (partial_rdofs) {
auto first_remaining = ONE_TS_BURST_LEN - partial_rdofs;
// memcpy(burst_copy_buffer, partial_buf, partial_rdofs * sizeof(blade_sample_type));
auto rd = rcd->read_n(burst_copy_buffer + partial_rdofs, 0, first_remaining);
if (rd != first_remaining) {
partial_rdofs += rd;
return;
}
timekeeper.inc_and_update_safe(rcd->get_first_ts() - partial_rdofs);
handle_sch_or_nb();
to_skip = first_remaining;
}
// apply sample rate slippage compensation
to_skip -= temp_ts_corr_offset;
// FIXME: happens rarely, read_n start -1 blows up
// this is fine: will just be corrected one buffer later
if (to_skip < 0)
to_skip = 0;
else
temp_ts_corr_offset = 0;
const auto left_after_burst = rcd->actual_samples_per_buffer() - to_skip;
const int full = left_after_burst / ONE_TS_BURST_LEN;
const int frac = left_after_burst % ONE_TS_BURST_LEN;
for (int i = 0; i < full; i++) {
rcd->read_n(burst_copy_buffer, to_skip + i * ONE_TS_BURST_LEN, ONE_TS_BURST_LEN);
timekeeper.inc_and_update_safe(rcd->get_first_ts() + to_skip + i * ONE_TS_BURST_LEN);
handle_sch_or_nb();
}
if (frac)
rcd->read_n(burst_copy_buffer, to_skip + full * ONE_TS_BURST_LEN, frac);
partial_rdofs = frac;
}

View File

@@ -0,0 +1,301 @@
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "sigProcLib.h"
#include "syncthing.h"
#include <signalVector.h>
#include <radioVector.h>
#include <radioInterface.h>
#include "grgsm_vitac/grgsm_vitac.h"
#include "ms_rx_upper.h"
extern "C" {
#include <osmocom/core/select.h>
#include "sch.h"
#include "convolve.h"
#include "convert.h"
#include "proto_trxd.h"
void __lsan_do_recoverable_leak_check();
}
namespace trxcon
{
extern "C" {
#include <trxcon/trx_if.h>
}
trx_instance *trxcon_instance; // local handle
static tx_queue_t txq;
} // namespace trxcon
#ifdef LOG
#undef LOG
#define LOG(...) upper_trx::dummy_log()
#endif
void upper_trx::start_threads()
{
thr_control = std::thread([this] {
set_name_aff_sched("upper_ctrl", 1, SCHED_RR, sched_get_priority_max(SCHED_RR));
while (1) {
driveControl();
pthread_testcancel();
}
});
msleep(1);
thr_tx = std::thread([this] {
set_name_aff_sched("upper_tx", 1, SCHED_FIFO, sched_get_priority_max(SCHED_FIFO) - 1);
while (1) {
driveTx();
pthread_testcancel();
}
});
// atomic ensures data is not written to q until loop reads
start_ms();
set_name_aff_sched("upper_rx", 1, SCHED_FIFO, sched_get_priority_max(SCHED_RR) - 5);
while (1) {
// set_upper_ready(true);
driveReceiveFIFO();
pthread_testcancel();
osmo_select_main(1);
}
// std::thread([this] {
// set_name_aff_sched("leakcheck", 1, SCHED_FIFO, sched_get_priority_max(SCHED_FIFO) - 10);
// while (1) {
// std::this_thread::sleep_for(std::chrono::seconds{ 5 });
// __lsan_do_recoverable_leak_check();
// }
// }).detach();
}
void upper_trx::start_ms()
{
ms_trx::start();
}
SoftVector *upper_trx::pullRadioVector(GSM::Time &wTime, int &RSSI, int &timingOffset) __attribute__((optnone))
{
float pow, avg = 1.0;
static SoftVector bits(148);
static complex workbuf[40 + 625 + 40];
static signalVector sv(workbuf, 40, 625);
GSM::Time burst_time;
auto ss = reinterpret_cast<std::complex<float> *>(&workbuf[40]);
memset((void *)&workbuf[0], 0, sizeof(workbuf));
// assert(sv.begin() == &workbuf[40]);
one_burst e;
unsigned char outbin[148];
std::stringstream dbgout;
while (!rxqueue.spsc_pop(&e)) {
rxqueue.spsc_prep_pop();
}
burst_time = e.gsmts;
wTime = burst_time;
auto is_sch = (burst_time.TN() == 0 && gsm_sch_check_fn(burst_time.FN()));
auto is_fcch = (burst_time.TN() == 0 && gsm_fcch_check_fn(burst_time.FN()));
if (is_fcch) {
// return trash
// fprintf(stderr, "c %d\n",burst_time.FN());
return &bits;
}
if (is_sch) {
for (int i = 0; i < 148; i++)
(bits)[i] = (!e.sch_bits[i]) < 1 ? -1 : 1;
RSSI = 10;
timingOffset = 0;
// fprintf(stderr, "s %d\n", burst_time.FN());
return &bits;
}
auto ts = trxcon::trxcon_instance->ts_list[burst_time.TN()];
if (ts == NULL || ts->mf_layout == NULL)
return 0;
convert_and_scale<float, int16_t>(ss, e.burst, ONE_TS_BURST_LEN * 2, 1.f / float(rxFullScale));
pow = energyDetect(sv, 20 * rx_sps);
if (pow < -1) {
LOG(ALERT) << "Received empty burst";
return NULL;
}
avg = sqrt(pow);
{
float ncmax, dcmax;
std::complex<float> chan_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
std::complex<float> chan_imp_resp2[CHAN_IMP_RESP_LENGTH * d_OSR];
auto normal_burst_start = get_norm_chan_imp_resp(ss, &chan_imp_resp[0], &ncmax, mTSC);
auto dummy_burst_start = get_norm_chan_imp_resp(ss, &chan_imp_resp2[0], &dcmax, TS_DUMMY);
auto is_nb = ncmax > dcmax;
// std::cerr << " U " << (is_nb ? "NB" : "DB") << "@ o nb: " << normal_burst_start
// << " o db: " << dummy_burst_start << std::endl;
normal_burst_start = normal_burst_start < 39 ? normal_burst_start : 39;
normal_burst_start = normal_burst_start > -39 ? normal_burst_start : -39;
// fprintf(stderr, "%s %d\n", (is_nb ? "N":"D"), burst_time.FN());
// if (is_nb)
detect_burst(ss, &chan_imp_resp[0], normal_burst_start, outbin);
// else
// detect_burst(ss, &chan_imp_resp2[0], dummy_burst_start, outbin);
for (int i = 0; i < 148; i++)
(bits)[i] = (outbin[i]) < 1 ? -1 : 1;
}
RSSI = (int)floor(20.0 * log10(rxFullScale / avg));
timingOffset = (int)round(0);
return &bits;
}
void upper_trx::driveReceiveFIFO()
{
int RSSI;
int TOA; // in 1/256 of a symbol
GSM::Time burstTime;
if (!mOn)
return;
SoftVector *rxBurst = pullRadioVector(burstTime, RSSI, TOA);
if (rxBurst) {
trxd_from_trx response;
response.ts = burstTime.TN();
response.fn = htonl(burstTime.FN());
response.rssi = RSSI;
response.toa = htons(TOA);
SoftVector::const_iterator burstItr = rxBurst->begin();
if (burstTime.TN() == 0 && gsm_sch_check_fn(burstTime.FN())) {
clamp_array(rxBurst->begin(), 148, 1.5f);
for (unsigned int i = 0; i < gSlotLen; i++) {
auto val = *burstItr++;
auto vval = isnan(val) ? 0 : val;
((int8_t *)response.symbols)[i] = round((vval - 0.5) * 64.0);
}
} else {
// invert and fix to +-127 sbits
for (int i = 0; i < 148; i++)
((int8_t *)response.symbols)[i] = *burstItr++ > 0.0f ? -127 : 127;
}
trxcon::trx_data_rx_handler(trxcon::trxcon_instance, (uint8_t *)&response);
}
}
void upper_trx::driveTx()
{
trxd_to_trx e;
while (!trxcon::txq.spsc_pop(&e)) {
trxcon::txq.spsc_prep_pop();
}
trxd_to_trx *burst = &e;
auto proper_fn = ntohl(burst->fn);
// std::cerr << "got burst!" << proper_fn << ":" << burst->ts
// << " current: " << timekeeper.gsmtime().FN()
// << " dff: " << (int64_t)((int64_t)timekeeper.gsmtime().FN() - (int64_t)proper_fn)
// << std::endl;
auto currTime = GSM::Time(proper_fn, burst->ts);
int RSSI = (int)burst->txlev;
static BitVector newBurst(gSlotLen);
BitVector::iterator itr = newBurst.begin();
auto *bufferItr = burst->symbols;
while (itr < newBurst.end())
*itr++ = *bufferItr++;
auto txburst = modulateBurst(newBurst, 8 + (currTime.TN() % 4 == 0), 4);
scaleVector(*txburst, txFullScale * 0.7 /* * pow(10, -RSSI / 10)*/);
// float -> int16
blade_sample_type burst_buf[txburst->size()];
convert_and_scale<int16_t, float>(burst_buf, txburst->begin(), txburst->size() * 2, 1);
// auto check = signalVector(txburst->size(), 40);
// convert_and_scale<float, int16_t, 1>(check.begin(), burst_buf, txburst->size() * 2);
// estim_burst_params ebp;
// auto d = detectAnyBurst(check, 2, 4, 4, CorrType::RACH, 40, &ebp);
// if(d)
// std::cerr << "RACH D! " << ebp.toa << std::endl;
// else
// std::cerr << "RACH NOOOOOOOOOO D! " << ebp.toa << std::endl;
// memory read --binary --outfile /tmp/mem.bin &burst_buf[0] --count 2500 --force
submit_burst(burst_buf, txburst->size(), currTime);
delete txburst;
}
int trxc_main(int argc, char *argv[])
{
pthread_setname_np(pthread_self(), "main_trxc");
convolve_init();
convert_init();
sigProcLibSetup();
initvita();
int status = 0;
auto trx = new upper_trx();
trx->do_auto_gain = true;
status = trx->init_dev_and_streams(0, 0);
trx->start_threads();
return status;
}
extern "C" {
void init_external_transceiver(struct trx_instance *trx, int argc, char **argv)
{
trxcon::trxcon_instance = (trxcon::trx_instance *)trx;
std::cout << "init?" << std::endl;
trxc_main(argc, argv);
}
void close_external_transceiver(int argc, char **argv)
{
std::cout << "Shutting down transceiver..." << std::endl;
}
void tx_external_transceiver(uint8_t *burst)
{
trxcon::txq.spsc_push((trxd_to_trx *)burst);
}
}

View File

@@ -0,0 +1,111 @@
#pragma once
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <netdb.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include "GSMCommon.h"
#include "radioClock.h"
#include "syncthing.h"
#include "l1if.h"
using tx_queue_t = spsc_cond<8 * 1, trxd_to_trx, true, false>;
class upper_trx : public ms_trx {
int rx_sps, tx_sps;
bool mOn; ///< flag to indicate that transceiver is powered on
double mTxFreq; ///< the transmit frequency
double mRxFreq; ///< the receive frequency
int mPower; ///< the transmit power in dB
unsigned mMaxExpectedDelay; ///< maximum TOA offset in GSM symbols
unsigned long long mRxSlotMask[8]; ///< MS - enabled multiframe slot mask
int mCtrlSockets;
sockaddr_in ctrldest;
sockaddr ctrlsrc;
void openudp(int *mSocketFD, unsigned short localPort, const char *wlocalIP)
{
*mSocketFD = socket(AF_INET, SOCK_DGRAM, 0);
int on = 1;
setsockopt(*mSocketFD, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
struct sockaddr_in address;
size_t length = sizeof(address);
bzero(&address, length);
address.sin_family = AF_INET;
address.sin_addr.s_addr = inet_addr(wlocalIP);
address.sin_port = htons(localPort);
if (bind(*mSocketFD, (struct sockaddr *)&address, length) < 0) {
std::cerr << "bind fail!" << std::endl;
exit(0);
}
}
bool resolveAddress(struct sockaddr_in *address, const char *host, unsigned short port)
{
struct hostent *hp;
int h_errno_local;
struct hostent hostData;
char tmpBuffer[2048];
auto rc = gethostbyname2_r(host, AF_INET, &hostData, tmpBuffer, sizeof(tmpBuffer), &hp, &h_errno_local);
if (hp == NULL || hp->h_addrtype != AF_INET || rc != 0) {
std::cerr << "WARNING -- gethostbyname() failed for " << host << ", "
<< hstrerror(h_errno_local);
exit(0);
return false;
}
address->sin_family = hp->h_addrtype;
assert(sizeof(address->sin_addr) == hp->h_length);
memcpy(&(address->sin_addr), hp->h_addr_list[0], hp->h_length);
address->sin_port = htons(port);
return true;
}
void driveControl();
void driveReceiveFIFO();
void driveTx();
void commandhandler(char *buffer, char *response);
void writeClockInterface(){};
SoftVector *pullRadioVector(GSM::Time &wTime, int &RSSI, int &timingOffset);
std::thread thr_control, thr_rx, thr_tx;
public:
void start_threads();
void start_ms();
upper_trx() : rx_sps(4), tx_sps(4)
{
auto c_srcport = 6700 + 2 * 0 + 1;
auto c_dstport = 6700 + 2 * 0 + 101;
openudp(&mCtrlSockets, c_srcport, "127.0.0.1");
resolveAddress(&ctrldest, "127.0.0.1", c_dstport);
};
};

View File

@@ -0,0 +1,337 @@
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "GSMCommon.h"
#include <atomic>
#include <cassert>
#include <complex>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <thread>
#include <fstream>
#include "sigProcLib.h"
#include "syncthing.h"
#include "ms_rx_burst.h"
#include "grgsm_vitac/grgsm_vitac.h"
extern "C" {
#include "sch.h"
#include "convolve.h"
#include "convert.h"
}
dummylog ms_trx::dummy_log;
const int offset_start = -15;
int offsetrange = 200;
static int offset_ctr = 0;
void tx_test(ms_trx *t, ts_hitter_q_t *q, unsigned int *tsc)
{
sched_param sch_params;
sch_params.sched_priority = sched_get_priority_max(SCHED_FIFO);
pthread_setschedparam(pthread_self(), SCHED_FIFO, &sch_params);
auto burst = genRandAccessBurst(0, 4, 0);
scaleVector(*burst, t->txFullScale * 0.7);
// float -> int16
blade_sample_type burst_buf[burst->size()];
convert_and_scale<int16_t, float>(burst_buf, burst->begin(), burst->size() * 2, 1);
while (1) {
GSM::Time target;
while (!q->spsc_pop(&target)) {
q->spsc_prep_pop();
}
std::cerr << std::endl << "\x1B[32m hitting " << target.FN() << "\033[0m" << std::endl;
int timing_advance = 0;
int64_t now_ts;
GSM::Time now_time;
target.incTN(3); // ul dl offset
int target_fn = target.FN();
int target_tn = target.TN();
t->timekeeper.get_both(&now_time, &now_ts);
auto diff_fn = GSM::FNDelta(target_fn, now_time.FN());
int diff_tn = (target_tn - (int)now_time.TN()) % 8;
auto tosend = GSM::Time(diff_fn, 0);
if (diff_tn > 0)
tosend.incTN(diff_tn);
else if (diff_tn < 0)
tosend.decTN(-diff_tn);
// in thory fn equal and tn+3 equal is also a problem...
if (diff_fn < 0 || (diff_fn == 0 && (now_time.TN() - target_tn < 1))) {
std::cerr << "## TX too late?! fn DIFF:" << diff_fn << " tn LOCAL: " << now_time.TN()
<< " tn OTHER: " << target_tn << std::endl;
return;
}
auto check = now_time + tosend;
int64_t send_ts =
now_ts + tosend.FN() * 8 * ONE_TS_BURST_LEN + tosend.TN() * ONE_TS_BURST_LEN - timing_advance;
// std::cerr << "## fn DIFF: " << diff_fn << " ## tn DIFF: " << diff_tn
// << " tn LOCAL: " << now_time.TN() << " tn OTHER: " << target_tn
// << " tndiff" << diff_tn << " tosend:" << tosend.FN() << ":" << tosend.TN()
// << " calc: " << check.FN() << ":" <<check.TN()
// << " target: " << target.FN() << ":" <<target.TN()
// << " ts now: " << now_ts << " target ts:" << send_ts << std::endl;
unsigned int pad = 4 * 25;
blade_sample_type buf2[burst->size() + pad];
memset(buf2, 0, pad * sizeof(blade_sample_type));
memcpy(&buf2[pad], burst_buf, burst->size() * sizeof(blade_sample_type));
assert(target.FN() == check.FN());
assert(target.TN() == check.TN());
assert(target.FN() % 51 == 21);
// auto this_offset = offset_start + (offset_ctr++ % offsetrange);
// std::cerr << "-- O " << this_offset << std::endl;
// send_ts = now_ts + ((target.FN() * 8 + (int)target.TN()) - (now_time.FN() * 8 + (int)now_time.TN())) * ONE_TS_BURST_LEN - timing_advance;
t->submit_burst_ts(buf2, burst->size() + pad, send_ts - pad);
// signalVector test(burst->size() + pad);
// convert_and_scale<float, int16_t>(test.begin(), buf2, burst->size() * 2 + pad, 1.f / float(scale));
// estim_burst_params ebp;
// auto det = detectAnyBurst(test, 0, 4, 4, CorrType::RACH, 40, &ebp);
// if (det > 0)
// std::cerr << "## Y " << ebp.toa << std::endl;
// else
// std::cerr << "## NOOOOOOOOO " << ebp.toa << std::endl;
}
}
#ifdef SYNCTHINGONLY
template <typename A> auto parsec(std::vector<std::string> &v, A &itr, std::string arg, bool *rv)
{
if (*itr == arg) {
*rv = true;
return true;
}
return false;
}
template <typename A, typename B, typename C>
bool parsec(std::vector<std::string> &v, A &itr, std::string arg, B f, C *rv)
{
if (*itr == arg) {
itr++;
if (itr != v.end()) {
*rv = f(itr->c_str());
return true;
}
}
return false;
}
template <typename A> bool parsec(std::vector<std::string> &v, A &itr, std::string arg, int scale, int *rv)
{
return parsec(
v, itr, arg, [scale](const char *v) -> auto{ return atoi(v) * scale; }, rv);
}
template <typename A> bool parsec(std::vector<std::string> &v, A &itr, std::string arg, int scale, unsigned int *rv)
{
return parsec(
v, itr, arg, [scale](const char *v) -> auto{ return atoi(v) * scale; }, rv);
}
int main(int argc, char *argv[])
{
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(2, &cpuset);
auto rv = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
if (rv < 0) {
std::cerr << "affinity: errreur! " << std::strerror(errno);
return 0;
}
unsigned int default_tx_freq(881000 * 1000), default_rx_freq(926000 * 1000);
unsigned int grx = 20, gtx = 20;
bool tx_flag = false;
pthread_setname_np(pthread_self(), "main");
convolve_init();
convert_init();
sigProcLibSetup();
initvita();
int status = 0;
auto trx = new ms_trx();
trx->do_auto_gain = true;
std::vector<std::string> args(argv + 1, argv + argc);
for (auto i = args.begin(); i != args.end(); ++i) {
parsec(args, i, "-r", 1000, &default_rx_freq);
parsec(args, i, "-t", 1000, &default_tx_freq);
parsec(args, i, "-gr", 1, &grx);
parsec(args, i, "-gt", 1, &gtx);
parsec(args, i, "-tx", &tx_flag);
}
std::cerr << "usage: " << argv[0] << " <rxfreq in khz, i.e. 926000> [txfreq in khz, i.e. 881000] [TX]"
<< std::endl
<< "rx" << (argc == 1 ? " (default) " : " ") << default_rx_freq << "hz, tx " << default_tx_freq
<< "hz" << std::endl
<< "gain rx " << grx << " gain tx " << gtx << std::endl
<< (tx_flag ? "##!!## RACH TX ACTIVE ##!!##" : "-- no rach tx --") << std::endl;
status = trx->init_dev_and_streams(0, 0);
if (status < 0)
return status;
trx->tuneRx(default_rx_freq);
trx->tuneTx(default_tx_freq);
trx->setRxGain(grx);
trx->setTxGain(gtx);
if (status == 0) {
// FIXME: hacks! needs exit flag for detached threads!
std::thread(rcv_bursts_test, &trx->rxqueue, &trx->mTSC, trx->rxFullScale).detach();
if (tx_flag)
std::thread(tx_test, trx, &trx->ts_hitter_q, &trx->mTSC).detach();
trx->start();
do {
sleep(1);
} while (1);
trx->stop_threads();
}
delete trx;
return status;
}
#endif
int ms_trx::init_streams(void *rx_cb, void *tx_cb)
{
return 0;
}
int ms_trx::init_dev_and_streams(void *rx_cb, void *tx_cb)
{
int status = 0;
status = base::init_device(rx_bh(), tx_bh());
if (status < 0) {
std::cerr << "failed to init dev!" << std::endl;
return -1;
}
return status;
}
bh_fn_t ms_trx::rx_bh()
{
return [this](dev_buf_t *rcd) -> int {
if (this->search_for_sch(rcd) == SCH_STATE::FOUND)
this->grab_bursts(rcd);
return 0;
};
}
bh_fn_t ms_trx::tx_bh()
{
return [this](dev_buf_t *rcd) -> int {
#pragma unused(rcd)
auto y = this;
#pragma unused(y)
/* nothing to do here */
return 0;
};
}
void ms_trx::start()
{
auto fn = get_rx_burst_handler_fn(rx_bh());
rx_task = std::thread(fn);
usleep(1000);
auto fn2 = get_tx_burst_handler_fn(tx_bh());
tx_task = std::thread(fn2);
}
void ms_trx::set_upper_ready(bool is_ready)
{
upper_is_ready = is_ready;
}
void ms_trx::stop_threads()
{
std::cerr << "killing threads...\r\n" << std::endl;
rx_task.join();
}
void ms_trx::submit_burst(blade_sample_type *buffer, int len, GSM::Time target)
{
int64_t now_ts;
GSM::Time now_time;
target.incTN(3); // ul dl offset
int target_fn = target.FN();
int target_tn = target.TN();
timekeeper.get_both(&now_time, &now_ts);
auto diff_fn = GSM::FNDelta(target_fn, now_time.FN());
int diff_tn = (target_tn - (int)now_time.TN()) % 8;
auto tosend = GSM::Time(diff_fn, 0);
if (diff_tn > 0)
tosend.incTN(diff_tn);
else
tosend.decTN(-diff_tn);
// in thory fn equal and tn+3 equal is also a problem...
if (diff_fn < 0 || (diff_fn == 0 && (now_time.TN() - target_tn < 1))) {
std::cerr << "## TX too late?! fn DIFF:" << diff_fn << " tn LOCAL: " << now_time.TN()
<< " tn OTHER: " << target_tn << std::endl;
return;
}
auto check = now_time + tosend;
int64_t send_ts = now_ts + tosend.FN() * 8 * ONE_TS_BURST_LEN + tosend.TN() * ONE_TS_BURST_LEN - timing_advance;
// std::cerr << "## fn DIFF: " << diff_fn << " ## tn DIFF: " << diff_tn
// << " tn LOCAL/OTHER: " << now_time.TN() << "/" << target_tn
// << " tndiff" << diff_tn << " tosend:" << tosend.FN() << ":" << tosend.TN()
// << " check: " << check.FN() << ":" <<check.TN()
// << " target: " << target.FN() << ":" <<target.TN()
// << " ts now: " << now_ts << " target ts:" << send_ts << std::endl;
#if 1
unsigned int pad = 4 * 4;
blade_sample_type buf2[len + pad];
memset(buf2, 0, pad * sizeof(blade_sample_type));
memcpy(&buf2[pad], buffer, len * sizeof(blade_sample_type));
assert(target.FN() == check.FN());
assert(target.TN() == check.TN());
submit_burst_ts(buf2, len + pad, send_ts - pad);
#else
submit_burst_ts(buffer, len, send_ts);
#endif
}

View File

@@ -0,0 +1,235 @@
#pragma once
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <atomic>
#include <cassert>
#include <complex>
#include <cstdint>
#include <mutex>
#include <iostream>
#include <thread>
#if defined(BUILDBLADE)
#include "bladerf_specific.h"
#define BASET blade_hw<ms_trx>
#elif defined(BUILDUHD)
#include "uhd_specific.h"
#define BASET uhd_hw<ms_trx>
#elif defined(BUILDIPC)
#include "ipc_specific.h"
#define BASET ipc_hw<ms_trx>
#else
#error wat? no device..
#endif
#include "GSMCommon.h"
#include "itrq.h"
const unsigned int ONE_TS_BURST_LEN = (3 + 58 + 26 + 58 + 3 + 8.25) * 4 /*sps*/;
const unsigned int NUM_RXQ_FRAMES = 1; // rx thread <-> upper rx queue
const unsigned int SCH_LEN_SPS = (ONE_TS_BURST_LEN * 8 /*ts*/ * 12 /*frames*/);
template <typename T> void clamp_array(T *start2, unsigned int len, T max)
{
for (int i = 0; i < len; i++) {
const T t1 = start2[i] < -max ? -max : start2[i];
const T t2 = t1 > max ? max : t1;
start2[i] = t2;
}
}
template <typename DST_T, typename SRC_T, typename ST>
void convert_and_scale(void *dst, void *src, unsigned int src_len, ST scale)
{
for (unsigned int i = 0; i < src_len; i++)
reinterpret_cast<DST_T *>(dst)[i] = static_cast<DST_T>((reinterpret_cast<SRC_T *>(src)[i])) * scale;
}
template <typename DST_T, typename SRC_T> void convert_and_scale_default(void *dst, void *src, unsigned int src_len)
{
return convert_and_scale<DST_T, SRC_T>(dst, src, src_len, SAMPLE_SCALE_FACTOR);
}
struct one_burst {
one_burst()
{
}
GSM::Time gsmts;
union {
blade_sample_type burst[ONE_TS_BURST_LEN];
unsigned char sch_bits[148];
};
};
using rx_queue_t = spsc_cond<8 * NUM_RXQ_FRAMES, one_burst, true, true>;
enum class SCH_STATE { SEARCHING, FOUND };
class dummylog : private std::streambuf {
std::ostream null_stream;
public:
dummylog() : null_stream(this){};
~dummylog() override{};
std::ostream &operator()()
{
return null_stream;
}
int overflow(int c) override
{
return c;
}
};
// keeps relationship between gsm time and (continuously adjusted) ts
class time_keeper {
GSM::Time global_time_keeper;
int64_t global_ts_keeper;
std::mutex m;
public:
time_keeper() : global_time_keeper(0), global_ts_keeper(0)
{
}
void set(GSM::Time t, int64_t ts)
{
std::lock_guard<std::mutex> g(m);
global_time_keeper = t;
global_ts_keeper = ts;
}
void inc_both()
{
std::lock_guard<std::mutex> g(m);
global_time_keeper.incTN(1);
global_ts_keeper += ONE_TS_BURST_LEN;
}
void inc_and_update(int64_t new_ts)
{
std::lock_guard<std::mutex> g(m);
global_time_keeper.incTN(1);
global_ts_keeper = new_ts;
// std::cerr << "u " << new_ts << std::endl;
}
void inc_and_update_safe(int64_t new_ts)
{
std::lock_guard<std::mutex> g(m);
auto diff = new_ts - global_ts_keeper;
assert(diff < 1.5 * ONE_TS_BURST_LEN);
assert(diff > 0.5 * ONE_TS_BURST_LEN);
global_time_keeper.incTN(1);
global_ts_keeper = new_ts;
// std::cerr << "s " << new_ts << std::endl;
}
void dec_by_one()
{
std::lock_guard<std::mutex> g(m);
global_time_keeper.decTN(1);
global_ts_keeper -= ONE_TS_BURST_LEN;
}
auto get_ts()
{
std::lock_guard<std::mutex> g(m);
return global_ts_keeper;
}
auto gsmtime()
{
std::lock_guard<std::mutex> g(m);
return global_time_keeper;
}
void get_both(GSM::Time *t, int64_t *ts)
{
std::lock_guard<std::mutex> g(m);
*t = global_time_keeper;
*ts = global_ts_keeper;
}
};
using ts_hitter_q_t = spsc_cond<64, GSM::Time, true, false>;
struct ms_trx : public BASET {
using base = BASET;
static dummylog dummy_log;
unsigned int mTSC;
unsigned int mBSIC;
int timing_advance;
bool do_auto_gain;
std::thread rx_task;
std::thread tx_task;
std::thread *calcrval_task;
// provides bursts to upper rx thread
rx_queue_t rxqueue;
#ifdef SYNCTHINGONLY
ts_hitter_q_t ts_hitter_q;
#endif
blade_sample_type *first_sch_buf;
blade_sample_type *burst_copy_buffer;
uint64_t first_sch_buf_rcv_ts;
std::atomic<bool> rcv_done;
std::atomic<bool> sch_thread_done;
int64_t temp_ts_corr_offset = 0;
int64_t first_sch_ts_start = -1;
time_keeper timekeeper;
void start();
std::atomic<bool> upper_is_ready;
void set_upper_ready(bool is_ready);
bool handle_sch_or_nb();
bool handle_sch(bool first = false);
bool decode_sch(float *bits, bool update_global_clock);
SCH_STATE search_for_sch(dev_buf_t *rcd);
void grab_bursts(dev_buf_t *rcd);
int init_device();
int init_streams(void *rx_cb, void *tx_cb);
int init_dev_and_streams(void *rx_cb, void *tx_cb);
void stop_threads();
void *rx_cb(ms_trx *t);
void *tx_cb();
void maybe_update_gain(one_burst &brst);
ms_trx()
: timing_advance(0), do_auto_gain(false), rxqueue(), first_sch_buf(new blade_sample_type[SCH_LEN_SPS]),
burst_copy_buffer(new blade_sample_type[ONE_TS_BURST_LEN]), rcv_done{ false }, sch_thread_done{ false }
{
}
virtual ~ms_trx()
{
delete[] burst_copy_buffer;
delete[] first_sch_buf;
}
bh_fn_t rx_bh();
bh_fn_t tx_bh();
void submit_burst(blade_sample_type *buffer, int len, GSM::Time);
void set_ta(int val)
{
assert(val > -127 && val < 128);
timing_advance = val * 4;
}
};

View File

@@ -0,0 +1,274 @@
#pragma once
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <uhd/version.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/types/metadata.hpp>
#include <complex>
#include <cstring>
#include <iostream>
#include <thread>
#include <Timeval.h>
#include <vector>
using blade_sample_type = std::complex<int16_t>;
const int SAMPLE_SCALE_FACTOR = 1;
struct uhd_buf_wrap {
double rxticks;
size_t num_samps;
uhd::rx_metadata_t *md;
blade_sample_type *buf;
auto actual_samples_per_buffer()
{
return num_samps;
}
long get_first_ts()
{
return md->time_spec.to_ticks(rxticks);
}
int readall(blade_sample_type *outaddr)
{
memcpy(outaddr, buf, num_samps * sizeof(blade_sample_type));
return num_samps;
}
int read_n(blade_sample_type *outaddr, int start, int num)
{
assert(start >= 0);
auto to_read = std::min((int)num_samps - start, num);
assert(to_read >= 0);
memcpy(outaddr, buf + start, to_read * sizeof(blade_sample_type));
return to_read;
}
};
using dev_buf_t = uhd_buf_wrap;
using bh_fn_t = std::function<int(dev_buf_t *)>;
template <typename T> struct uhd_hw {
uhd::usrp::multi_usrp::sptr dev;
uhd::rx_streamer::sptr rx_stream;
uhd::tx_streamer::sptr tx_stream;
blade_sample_type *one_pkt_buf;
std::vector<blade_sample_type *> pkt_ptrs;
size_t rx_spp;
double rxticks;
const unsigned int rxFullScale, txFullScale;
const int rxtxdelay;
float rxgain, txgain;
virtual ~uhd_hw()
{
delete[] one_pkt_buf;
}
uhd_hw() : rxFullScale(32767), txFullScale(32767), rxtxdelay(-67)
{
}
bool tuneTx(double freq, size_t chan = 0)
{
msleep(25);
dev->set_tx_freq(freq, chan);
msleep(25);
return true;
};
bool tuneRx(double freq, size_t chan = 0)
{
msleep(25);
dev->set_rx_freq(freq, chan);
msleep(25);
return true;
};
bool tuneRxOffset(double offset, size_t chan = 0)
{
return true;
};
double setRxGain(double dB, size_t chan = 0)
{
rxgain = dB;
msleep(25);
dev->set_rx_gain(dB, chan);
msleep(25);
return dB;
};
double setTxGain(double dB, size_t chan = 0)
{
txgain = dB;
msleep(25);
dev->set_tx_gain(dB, chan);
msleep(25);
return dB;
};
int setPowerAttenuation(int atten, size_t chan = 0)
{
return atten;
};
int init_device(bh_fn_t rxh, bh_fn_t txh)
{
auto const lock_delay_ms = 500;
auto const mcr = 26e6;
auto const rate = (1625e3 / 6) * 4;
auto const ref = "external";
auto const gain = 35;
auto const freq = 931.4e6; // 936.8e6
auto bw = 0.5e6;
auto const channel = 0;
std::string args = {};
dev = uhd::usrp::multi_usrp::make(args);
std::cout << "Using Device: " << dev->get_pp_string() << std::endl;
dev->set_clock_source(ref);
dev->set_master_clock_rate(mcr);
dev->set_rx_rate(rate, channel);
dev->set_tx_rate(rate, channel);
uhd::tune_request_t tune_request(freq, 0);
dev->set_rx_freq(tune_request, channel);
dev->set_rx_gain(gain, channel);
dev->set_tx_gain(60, channel);
dev->set_rx_bandwidth(bw, channel);
dev->set_tx_bandwidth(bw, channel);
while (!(dev->get_rx_sensor("lo_locked", channel).to_bool() &&
dev->get_mboard_sensor("ref_locked").to_bool()))
std::this_thread::sleep_for(std::chrono::milliseconds(lock_delay_ms));
uhd::stream_args_t stream_args("sc16", "sc16");
rx_stream = dev->get_rx_stream(stream_args);
uhd::stream_args_t stream_args2("sc16", "sc16");
tx_stream = dev->get_tx_stream(stream_args2);
rx_spp = rx_stream->get_max_num_samps();
rxticks = dev->get_rx_rate();
assert(rxticks == dev->get_tx_rate());
one_pkt_buf = new blade_sample_type[rx_spp];
pkt_ptrs = { 1, &one_pkt_buf[0] };
return 0;
}
void *rx_cb(bh_fn_t burst_handler)
{
void *ret;
static int to_skip = 0;
uhd::rx_metadata_t md;
auto num_rx_samps = rx_stream->recv(pkt_ptrs.front(), rx_spp, md, 3.0, true);
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_TIMEOUT) {
std::cerr << boost::format("Timeout while streaming") << std::endl;
exit(0);
}
if (md.error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) {
std::cerr << boost::format("Got an overflow indication. Please consider the following:\n"
" Your write medium must sustain a rate of %fMB/s.\n"
" Dropped samples will not be written to the file.\n"
" Please modify this example for your purposes.\n"
" This message will not appear again.\n") %
1.f;
exit(0);
;
}
if (md.error_code != uhd::rx_metadata_t::ERROR_CODE_NONE) {
std::cerr << str(boost::format("Receiver error: %s") % md.strerror());
exit(0);
}
dev_buf_t rcd = { rxticks, num_rx_samps, &md, &one_pkt_buf[0] };
if (to_skip < 120) // prevents weird overflows on startup
to_skip++;
else {
burst_handler(&rcd);
}
return ret;
}
auto get_rx_burst_handler_fn(bh_fn_t burst_handler)
{
auto fn = [this, burst_handler] {
pthread_setname_np(pthread_self(), "rxrun");
uhd::stream_cmd_t stream_cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
stream_cmd.stream_now = true;
stream_cmd.time_spec = uhd::time_spec_t();
rx_stream->issue_stream_cmd(stream_cmd);
while (1) {
rx_cb(burst_handler);
}
};
return fn;
}
auto get_tx_burst_handler_fn(bh_fn_t burst_handler)
{
auto fn = [] {
// dummy
};
return fn;
}
void submit_burst_ts(blade_sample_type *buffer, int len, uint64_t ts)
{
uhd::tx_metadata_t m = {};
m.end_of_burst = true;
m.start_of_burst = true;
m.has_time_spec = true;
m.time_spec = m.time_spec.from_ticks(ts + rxtxdelay, rxticks); // uhd specific b210 delay!
std::vector<void *> ptrs(1, buffer);
tx_stream->send(ptrs, len, m);
uhd::async_metadata_t async_md;
bool tx_ack = false;
while (!tx_ack && tx_stream->recv_async_msg(async_md)) {
tx_ack = (async_md.event_code == uhd::async_metadata_t::EVENT_CODE_BURST_ACK);
}
std::cout << (tx_ack ? "yay" : "nay") << " " << async_md.time_spec.to_ticks(rxticks) << std::endl;
}
void set_name_aff_sched(const char *name, int cpunum, int schedtype, int prio)
{
pthread_setname_np(pthread_self(), name);
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(cpunum, &cpuset);
auto rv = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
if (rv < 0) {
std::cerr << name << " affinity: errreur! " << std::strerror(errno);
return exit(0);
}
sched_param sch_params;
sch_params.sched_priority = prio;
rv = pthread_setschedparam(pthread_self(), schedtype, &sch_params);
if (rv < 0) {
std::cerr << name << " sched: errreur! " << std::strerror(errno);
return exit(0);
}
}
};

View File

@@ -96,10 +96,8 @@ float avgVector::avg() const
bool avgVector::insert(float val)
{
if (size() < max) {
push_back(val);
return true;
}
if (!size())
return false;
if (itr >= this->size())
itr = 0;
@@ -109,16 +107,6 @@ bool avgVector::insert(float val)
return true;
}
bool avgVector::full() const
{
return size() >= max;
}
void avgVector::reset()
{
resize(0);
}
GSM::Time VectorQueue::nextTime() const
{
GSM::Time retVal;

294
Transceiver52M/sch.c Normal file
View File

@@ -0,0 +1,294 @@
#include <complex.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <osmocom/core/bits.h>
#include <osmocom/core/conv.h>
#include <osmocom/core/utils.h>
#include <osmocom/core/crcgen.h>
#include <osmocom/coding/gsm0503_coding.h>
#include <osmocom/coding/gsm0503_parity.h>
#include "sch.h"
/* GSM 04.08, 9.1.30 Synchronization channel information */
struct sch_packed_info {
ubit_t t1_hi[2];
ubit_t bsic[6];
ubit_t t1_md[8];
ubit_t t3p_hi[2];
ubit_t t2[5];
ubit_t t1_lo[1];
ubit_t t3p_lo[1];
} __attribute__((packed));
struct sch_burst {
sbit_t tail0[3];
sbit_t data0[39];
sbit_t etsc[64];
sbit_t data1[39];
sbit_t tail1[3];
sbit_t guard[8];
} __attribute__((packed));
static const uint8_t sch_next_output[][2] = {
{ 0, 3 }, { 1, 2 }, { 0, 3 }, { 1, 2 },
{ 3, 0 }, { 2, 1 }, { 3, 0 }, { 2, 1 },
{ 3, 0 }, { 2, 1 }, { 3, 0 }, { 2, 1 },
{ 0, 3 }, { 1, 2 }, { 0, 3 }, { 1, 2 },
};
static const uint8_t sch_next_state[][2] = {
{ 0, 1 }, { 2, 3 }, { 4, 5 }, { 6, 7 },
{ 8, 9 }, { 10, 11 }, { 12, 13 }, { 14, 15 },
{ 0, 1 }, { 2, 3 }, { 4, 5 }, { 6, 7 },
{ 8, 9 }, { 10, 11 }, { 12, 13 }, { 14, 15 },
};
static const struct osmo_conv_code gsm_conv_sch = {
.N = 2,
.K = 5,
.len = GSM_SCH_UNCODED_LEN,
.next_output = sch_next_output,
.next_state = sch_next_state,
};
#define GSM_MAX_BURST_LEN 157 * 4
#define GSM_SYM_RATE (1625e3 / 6) * 4
/* Pre-generated FCCH measurement tone */
static complex float fcch_ref[GSM_MAX_BURST_LEN];
int float_to_sbit(const float *in, sbit_t *out, float scale, int len)
{
int i;
for (i = 0; i < len; i++) {
out[i] = (in[i] - 0.5f) * scale;
}
return 0;
}
/* Check if FN contains a FCCH burst */
int gsm_fcch_check_fn(int fn)
{
int fn51 = fn % 51;
switch (fn51) {
case 0:
case 10:
case 20:
case 30:
case 40:
return 1;
}
return 0;
}
/* Check if FN contains a SCH burst */
int gsm_sch_check_fn(int fn)
{
int fn51 = fn % 51;
switch (fn51) {
case 1:
case 11:
case 21:
case 31:
case 41:
return 1;
}
return 0;
}
/* SCH (T1, T2, T3p) to full FN value */
int gsm_sch_to_fn(struct sch_info *sch)
{
int t1 = sch->t1;
int t2 = sch->t2;
int t3p = sch->t3p;
if ((t1 < 0) || (t2 < 0) || (t3p < 0))
return -1;
int tt;
int t3 = t3p * 10 + 1;
if (t3 < t2)
tt = (t3 + 26) - t2;
else
tt = (t3 - t2) % 26;
return t1 * 51 * 26 + tt * 51 + t3;
}
/* Parse encoded SCH message */
int gsm_sch_parse(const uint8_t *info, struct sch_info *desc)
{
struct sch_packed_info *p = (struct sch_packed_info *) info;
desc->bsic = (p->bsic[0] << 0) | (p->bsic[1] << 1) |
(p->bsic[2] << 2) | (p->bsic[3] << 3) |
(p->bsic[4] << 4) | (p->bsic[5] << 5);
desc->t1 = (p->t1_lo[0] << 0) | (p->t1_md[0] << 1) |
(p->t1_md[1] << 2) | (p->t1_md[2] << 3) |
(p->t1_md[3] << 4) | (p->t1_md[4] << 5) |
(p->t1_md[5] << 6) | (p->t1_md[6] << 7) |
(p->t1_md[7] << 8) | (p->t1_hi[0] << 9) |
(p->t1_hi[1] << 10);
desc->t2 = (p->t2[0] << 0) | (p->t2[1] << 1) |
(p->t2[2] << 2) | (p->t2[3] << 3) |
(p->t2[4] << 4);
desc->t3p = (p->t3p_lo[0] << 0) | (p->t3p_hi[0] << 1) |
(p->t3p_hi[1] << 2);
return 0;
}
/* From osmo-bts */
__attribute__((xray_always_instrument)) __attribute__((noinline)) int gsm_sch_decode(uint8_t *info, sbit_t *data)
{
int rc;
ubit_t uncoded[GSM_SCH_UNCODED_LEN];
osmo_conv_decode(&gsm_conv_sch, data, uncoded);
rc = osmo_crc16gen_check_bits(&gsm0503_sch_crc10,
uncoded, GSM_SCH_INFO_LEN,
uncoded + GSM_SCH_INFO_LEN);
if (rc)
return -1;
memcpy(info, uncoded, GSM_SCH_INFO_LEN * sizeof(ubit_t));
return 0;
}
#define FCCH_TAIL_BITS_LEN 3*4
#define FCCH_DATA_LEN 100*4// 142
#if 1
/* Compute FCCH frequency offset */
double org_gsm_fcch_offset(float *burst, int len)
{
int i, start, end;
float a, b, c, d, ang, avg = 0.0f;
double freq;
if (len > GSM_MAX_BURST_LEN)
len = GSM_MAX_BURST_LEN;
for (i = 0; i < len; i++) {
a = burst[2 * i + 0];
b = burst[2 * i + 1];
c = crealf(fcch_ref[i]);
d = cimagf(fcch_ref[i]);
burst[2 * i + 0] = a * c - b * d;
burst[2 * i + 1] = a * d + b * c;
}
start = FCCH_TAIL_BITS_LEN;
end = start + FCCH_DATA_LEN;
for (i = start; i < end; i++) {
a = cargf(burst[2 * (i - 1) + 0] +
burst[2 * (i - 1) + 1] * I);
b = cargf(burst[2 * i + 0] +
burst[2 * i + 1] * I);
ang = b - a;
if (ang > M_PI)
ang -= 2 * M_PI;
else if (ang < -M_PI)
ang += 2 * M_PI;
avg += ang;
}
avg /= (float) (end - start);
freq = avg / (2 * M_PI) * GSM_SYM_RATE;
return freq;
}
static const int L1 = 3;
static const int L2 = 32;
static const int N1 = 92;
static const int N2 = 92;
static struct { int8_t r; int8_t s; } P_inv_table[3+32];
void pinv(int P, int8_t* r, int8_t* s, int L1, int L2) {
for (int i = 0; i < L1; i++)
for (int j = 0; j < L2; j++)
if (P == L2 * i - L1 * j) {
*r = i;
*s = j;
return;
}
}
float ac_sum_with_lag( complex float* in, int lag, int offset, int N) {
complex float v = 0 + 0*I;
int total_offset = offset + lag;
for (int s = 0; s < N; s++)
v += in[s + total_offset] * conjf(in[s + total_offset - lag]);
return cargf(v);
}
double gsm_fcch_offset(float *burst, int len)
{
int start;
const float fs = 13. / 48. * 1e6 * 4;
const float expected_fcch_val = ((2 * M_PI) / (fs)) * 67700;
if (len > GSM_MAX_BURST_LEN)
len = GSM_MAX_BURST_LEN;
start = FCCH_TAIL_BITS_LEN+10 * 4;
float alpha_one = ac_sum_with_lag((complex float*)burst, L1, start, N1);
float alpha_two = ac_sum_with_lag((complex float*)burst, L2, start, N2);
float P_unrounded = (L1 * alpha_two - L2 * alpha_one) / (2 * M_PI);
int P = roundf(P_unrounded);
int8_t r = 0, s = 0;
pinv(P, &r, &s, L1, L2);
float omegal1 = (alpha_one + 2 * M_PI * r) / L1;
float omegal2 = (alpha_two + 2 * M_PI * s) / L2;
float rv = org_gsm_fcch_offset(burst, len);
//return rv;
float reval = GSM_SYM_RATE / (2 * M_PI) * (expected_fcch_val - (omegal1+omegal2)/2);
//fprintf(stderr, "XX rv %f %f %f %f\n", rv, reval, omegal1 / (2 * M_PI) * fs, omegal2 / (2 * M_PI) * fs);
//fprintf(stderr, "XX rv %f %f\n", rv, reval);
return -reval;
}
#endif
/* Generate FCCH measurement tone */
static __attribute__((constructor)) void init()
{
int i;
double freq = 0.25;
for (i = 0; i < GSM_MAX_BURST_LEN; i++) {
fcch_ref[i] = sin(2 * M_PI * freq * (double) i) +
cos(2 * M_PI * freq * (double) i) * I;
}
}

27
Transceiver52M/sch.h Normal file
View File

@@ -0,0 +1,27 @@
#ifndef _SCH_H_
#define _SCH_H_
#include <osmocom/core/bits.h>
struct sch_info {
int bsic;
int t1;
int t2;
int t3p;
};
#define GSM_SCH_INFO_LEN 25
#define GSM_SCH_UNCODED_LEN 35
#define GSM_SCH_CODED_LEN 78
int gsm_sch_decode(uint8_t *sb_info, sbit_t *burst);
int gsm_sch_parse(const uint8_t *sb_info, struct sch_info *desc);
int gsm_sch_to_fn(struct sch_info *sch);
int gsm_sch_check_fn(int fn);
int gsm_fcch_check_fn(int fn);
double gsm_fcch_offset(float *burst, int len);
int float_to_sbit(const float *in, sbit_t *out, float scale, int len);
#endif /* _SCH_H_ */

View File

@@ -87,17 +87,19 @@ static Resampler *dnsampler = NULL;
* perform 16-byte memory alignment required by many SSE instructions.
*/
struct CorrelationSequence {
CorrelationSequence() : sequence(NULL), buffer(NULL), toa(0.0)
CorrelationSequence() : sequence(NULL), buffer(NULL), toa(0.0), history(nullptr)
{
}
~CorrelationSequence()
{
delete sequence;
delete[] history;
}
signalVector *sequence;
void *buffer;
complex *history;
float toa;
complex gain;
};
@@ -129,6 +131,8 @@ struct PulseSequence {
static CorrelationSequence *gMidambles[] = {NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL};
static CorrelationSequence *gEdgeMidambles[] = {NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL};
static CorrelationSequence *gRACHSequences[] = {NULL,NULL,NULL};
static CorrelationSequence *gSCHSequence = NULL;
static CorrelationSequence *gDummySequence = NULL;
static PulseSequence *GSMPulse1 = NULL;
static PulseSequence *GSMPulse4 = NULL;
@@ -151,6 +155,12 @@ void sigProcLibDestroy()
gRACHSequences[i] = NULL;
}
delete gSCHSequence;
gSCHSequence = NULL;
delete gDummySequence;
gDummySequence = NULL;
delete GMSKRotation1;
delete GMSKReverseRotation1;
delete GMSKRotation4;
@@ -315,6 +325,8 @@ static signalVector *convolve(const signalVector *x, const signalVector *h,
append = true;
break;
case CUSTOM:
// FIXME: x->getstart?
if (start < h->size() - 1) {
head = h->size() - start;
append = true;
@@ -1290,6 +1302,77 @@ release:
return status;
}
static bool generateDummyMidamble(int sps)
{
bool status = true;
float toa;
complex *data = NULL;
signalVector *autocorr = NULL, *midamble = NULL;
signalVector *midMidamble = NULL, *_midMidamble = NULL;
delete gDummySequence;
/* Use middle 16 bits of each TSC. Correlation sequence is not pulse shaped */
midMidamble = modulateBurst(gDummyBurstTSC.segment(5,16), 0, sps, true);
if (!midMidamble)
return false;
/* Simulated receive sequence is pulse shaped */
midamble = modulateBurst(gDummyBurstTSC, 0, sps, false);
if (!midamble) {
status = false;
goto release;
}
// NOTE: Because ideal TSC 16-bit midamble is 66 symbols into burst,
// the ideal TSC has an + 180 degree phase shift,
// due to the pi/2 frequency shift, that
// needs to be accounted for.
// 26-midamble is 61 symbols into burst, has +90 degree phase shift.
scaleVector(*midMidamble, complex(-1.0, 0.0));
scaleVector(*midamble, complex(0.0, 1.0));
conjugateVector(*midMidamble);
/* For SSE alignment, reallocate the midamble sequence on 16-byte boundary */
data = (complex *) convolve_h_alloc(midMidamble->size());
_midMidamble = new signalVector(data, 0, midMidamble->size(), convolve_h_alloc, free);
_midMidamble->setAligned(true);
midMidamble->copyTo(*_midMidamble);
autocorr = convolve(midamble, _midMidamble, NULL, NO_DELAY);
if (!autocorr) {
status = false;
goto release;
}
gDummySequence = new CorrelationSequence;
gDummySequence->sequence = _midMidamble;
gDummySequence->gain = peakDetect(*autocorr, &toa, NULL);
/* For 1 sps only
* (Half of correlation length - 1) + midpoint of pulse shape + remainder
* 13.5 = (16 / 2 - 1) + 1.5 + (26 - 10) / 2
*/
if (sps == 1)
gDummySequence->toa = toa - 13.5;
else
gDummySequence->toa = 0;
release:
delete autocorr;
delete midamble;
delete midMidamble;
if (!status) {
delete _midMidamble;
free(data);
gDummySequence = NULL;
}
return status;
}
static CorrelationSequence *generateEdgeMidamble(int tsc)
{
complex *data = NULL;
@@ -1385,6 +1468,70 @@ release:
return status;
}
bool generateSCHSequence(int sps)
{
bool status = true;
float toa;
complex *data = NULL;
signalVector *autocorr = NULL;
signalVector *seq0 = NULL, *seq1 = NULL, *_seq1 = NULL;
delete gSCHSequence;
seq0 = modulateBurst(gSCHSynchSequence, 0, sps, false);
if (!seq0)
return false;
seq1 = modulateBurst(gSCHSynchSequence, 0, sps, true);
if (!seq1) {
status = false;
goto release;
}
conjugateVector(*seq1);
/* For SSE alignment, reallocate the midamble sequence on 16-byte boundary */
data = (complex *) convolve_h_alloc(seq1->size());
_seq1 = new signalVector(data, 0, seq1->size(), convolve_h_alloc, free);
_seq1->setAligned(true);
memcpy(_seq1->begin(), seq1->begin(), seq1->size() * sizeof(complex));
autocorr = convolve(seq0, _seq1, autocorr, NO_DELAY);
if (!autocorr) {
status = false;
goto release;
}
gSCHSequence = new CorrelationSequence;
gSCHSequence->sequence = _seq1;
gSCHSequence->buffer = data;
gSCHSequence->gain = peakDetect(*autocorr, &toa, NULL);
gSCHSequence->history = new complex[_seq1->size()];
/* For 1 sps only
* (Half of correlation length - 1) + midpoint of pulse shaping filer
* 20.5 = (64 / 2 - 1) + 1.5
*/
if (sps == 1)
gSCHSequence->toa = toa - 32.5;
else
gSCHSequence->toa = 0.0;
release:
delete autocorr;
delete seq0;
delete seq1;
if (!status) {
delete _seq1;
free(data);
gSCHSequence = NULL;
}
return status;
}
/*
* Peak-to-average computation +/- range from peak in symbols
*/
@@ -1442,17 +1589,18 @@ float energyDetect(const signalVector &rxBurst, unsigned windowLength)
return energy/windowLength;
}
static signalVector *downsampleBurst(const signalVector &burst)
static signalVector *downsampleBurst(const signalVector &burst, int in_len = DOWNSAMPLE_IN_LEN,
int out_len = DOWNSAMPLE_OUT_LEN)
{
signalVector in(DOWNSAMPLE_IN_LEN, dnsampler->len());
signalVector *out = new signalVector(DOWNSAMPLE_OUT_LEN);
burst.copyToSegment(in, 0, DOWNSAMPLE_IN_LEN);
signalVector in(in_len, dnsampler->len());
// gSCHSequence->sequence->size(), ensure next conv has no realloc
signalVector *out = new signalVector(out_len, 64);
burst.copyToSegment(in, 0, in_len);
if (dnsampler->rotate((float *) in.begin(), DOWNSAMPLE_IN_LEN,
(float *) out->begin(), DOWNSAMPLE_OUT_LEN) < 0) {
delete out;
out = NULL;
}
if (dnsampler->rotate((float *)in.begin(), in_len, (float *)out->begin(), out_len) < 0) {
delete out;
out = NULL;
}
return out;
};
@@ -1470,6 +1618,12 @@ static float computeCI(const signalVector *burst, const CorrelationSequence *syn
/* Integer position where the sequence starts */
const int ps = start + 1 - N + (int)roundf(toa);
if(ps < 0) // might be -22 for toa 40 with N=64, if off by a lot during sch ms sync
return 0;
if (ps + N > burst->size())
return 0;
/* Estimate Signal power */
S = 0.0f;
for (int i=0, j=ps; i<(int)N; i++,j++)
@@ -1512,11 +1666,11 @@ static int detectBurst(const signalVector &burst,
corr_in = &burst;
break;
case 4:
dec = downsampleBurst(burst);
/* Running at the downsampled rate at this point: */
corr_in = dec;
sps = 1;
break;
dec = downsampleBurst(burst, len * 4, len);
/* Running at the downsampled rate at this point: */
corr_in = dec;
sps = 1;
break;
default:
osmo_panic("%s:%d SPS %d not supported! Only 1 or 4 supported", __FILE__, __LINE__, sps);
}
@@ -1594,11 +1748,11 @@ static int detectGeneralBurst(const signalVector &rxBurst, float thresh, int sps
// Detect potential clipping
// We still may be able to demod the burst, so we'll give it a try
// and only report clipping if we can't demod.
float maxAmpl = maxAmplitude(rxBurst);
if (maxAmpl > CLIP_THRESH) {
LOG(INFO) << "max burst amplitude: " << maxAmpl << " is above the clipping threshold: " << CLIP_THRESH << std::endl;
clipping = true;
}
// float maxAmpl = maxAmplitude(rxBurst);
// if (maxAmpl > CLIP_THRESH) {
// LOG(INFO) << "max burst amplitude: " << maxAmpl << " is above the clipping threshold: " << CLIP_THRESH << std::endl;
// clipping = true;
// }
start = target - head - 1;
len = head + tail;
@@ -1653,6 +1807,86 @@ static int detectRACHBurst(const signalVector &burst, float threshold, int sps,
return rc;
}
int detectSCHBurst(signalVector &burst,
float thresh,
int sps,
sch_detect_type state, struct estim_burst_params *ebp)
{
int rc, start, target, head, tail, len;
float _toa;
complex _amp;
CorrelationSequence *sync;
if ((sps != 1) && (sps != 4))
return -1;
target = 3 + 39 + 64;
switch (state) {
case sch_detect_type::SCH_DETECT_NARROW:
head = 4;
tail = 4;
break;
case sch_detect_type::SCH_DETECT_BUFFER:
target = 1;
head = 0;
tail = (12 * 8 * 625) / 4; // 12 frames, downsampled /4 to 1 sps
break;
case sch_detect_type::SCH_DETECT_FULL:
default:
head = target - 1;
tail = 39 + 3 + 9;
break;
}
start = (target - head) * 1 - 1;
len = (head + tail) * 1;
sync = gSCHSequence;
signalVector corr(len);
signalVector _burst(burst, sync->sequence->size(), 5);
memcpy(_burst.begin() - sync->sequence->size(), sync->history, sync->sequence->size() * sizeof(complex));
memcpy(sync->history, &burst.begin()[burst.size() - sync->sequence->size()],
sync->sequence->size() * sizeof(complex));
rc = detectBurst(_burst, corr, sync, thresh, sps, start, len, ebp);
if (rc < 0) {
return -1;
} else if (!rc) {
ebp->amp = 0.0f;
ebp->toa = 0.0f;
return 0;
}
if (state == sch_detect_type::SCH_DETECT_BUFFER)
ebp->toa = ebp->toa - (3 + 39 + 64);
else {
/* Subtract forward search bits from delay */
ebp->toa = ebp->toa - head;
}
return rc;
}
static int detectDummyBurst(const signalVector &burst, float threshold,
int sps, unsigned max_toa, struct estim_burst_params *ebp)
{
int rc, target, head, tail;
CorrelationSequence *sync;
target = 3 + 58 + 16 + 5;
head = 10;
tail = 6 + max_toa;
sync = gDummySequence;
ebp->tsc = 0;
rc = detectGeneralBurst(burst, threshold, sps, target, head, tail, sync, ebp);
return rc;
}
/*
* Normal burst detection
*
@@ -1671,7 +1905,7 @@ static int analyzeTrafficBurst(const signalVector &burst, unsigned tsc, float th
return -SIGERR_UNSUPPORTED;
target = 3 + 58 + 16 + 5;
head = 6;
head = 10;
tail = 6 + max_toa;
sync = gMidambles[tsc];
@@ -1720,6 +1954,9 @@ int detectAnyBurst(const signalVector &burst, unsigned tsc, float threshold,
case RACH:
rc = detectRACHBurst(burst, threshold, sps, max_toa, type == EXT_RACH, ebp);
break;
case IDLE:
rc = detectDummyBurst(burst, threshold, sps, max_toa, ebp);
break;
default:
LOG(ERR) << "Invalid correlation type";
}
@@ -1922,6 +2159,9 @@ bool sigProcLibSetup()
generateRACHSequence(&gRACHSequences[1], gRACHSynchSequenceTS1, 1);
generateRACHSequence(&gRACHSequences[2], gRACHSynchSequenceTS2, 1);
generateSCHSequence(1);
generateDummyMidamble(1);
for (int tsc = 0; tsc < 8; tsc++) {
generateMidamble(1, tsc);
gEdgeMidambles[tsc] = generateEdgeMidamble(tsc);

View File

@@ -31,6 +31,7 @@ enum CorrType{
TSC, ///< timeslot should contain a normal burst
EXT_RACH, ///< timeslot should contain an extended access burst
RACH, ///< timeslot should contain an access burst
SCH,
EDGE, ///< timeslot should contain an EDGE burst
IDLE ///< timeslot is an idle (or dummy) burst
};
@@ -93,6 +94,8 @@ signalVector *generateDummyBurst(int sps, int tn);
void scaleVector(signalVector &x,
complex scale);
signalVector *delayVector(const signalVector *in, signalVector *out, float delay);
/**
Rough energy estimator.
@param rxBurst A GSM burst.
@@ -133,6 +136,17 @@ int detectAnyBurst(const signalVector &burst,
unsigned max_toa,
struct estim_burst_params *ebp);
enum class sch_detect_type {
SCH_DETECT_FULL,
SCH_DETECT_NARROW,
SCH_DETECT_BUFFER,
};
int detectSCHBurst(signalVector &rxBurst,
float detectThreshold,
int sps,
sch_detect_type state, struct estim_burst_params *ebp);
/** Demodulate burst basde on type and output soft bits */
SoftVector *demodAnyBurst(const signalVector &burst, CorrType type,
int sps, struct estim_burst_params *ebp);

View File

@@ -138,6 +138,11 @@ AC_ARG_WITH(ipc, [
[enable IPC])
])
AC_ARG_WITH(bladerf, [
AS_HELP_STRING([--with-bladerf],
[enable bladeRF])
])
AC_ARG_WITH(singledb, [
AS_HELP_STRING([--with-singledb],
[enable single daughterboard use on USRP1])
@@ -187,6 +192,10 @@ AS_IF([test "x$with_uhd" = "xyes"],[
)
])
AS_IF([test "x$with_bladerf" = "xyes"], [
PKG_CHECK_MODULES(BLADE, libbladeRF >= 2.0)
])
AS_IF([test "x$with_singledb" = "xyes"], [
AC_DEFINE(SINGLEDB, 1, Define to 1 for single daughterboard)
])
@@ -240,6 +249,7 @@ AM_CONDITIONAL(DEVICE_UHD, [test "x$with_uhd" = "xyes"])
AM_CONDITIONAL(DEVICE_USRP1, [test "x$with_usrp1" = "xyes"])
AM_CONDITIONAL(DEVICE_LMS, [test "x$with_lms" = "xyes"])
AM_CONDITIONAL(DEVICE_IPC, [test "x$with_ipc" = "xyes"])
AM_CONDITIONAL(DEVICE_BLADE, [test "x$with_bladerf" = "xyes"])
AM_CONDITIONAL(ARCH_ARM, [test "x$with_neon" = "xyes" || test "x$with_neon_vfpv4" = "xyes"])
AM_CONDITIONAL(ARCH_ARM_A15, [test "x$with_neon_vfpv4" = "xyes"])
@@ -326,6 +336,8 @@ AC_CONFIG_FILES([\
Transceiver52M/device/usrp1/Makefile \
Transceiver52M/device/lms/Makefile \
Transceiver52M/device/ipc/Makefile \
Transceiver52M/device/ipc2/Makefile \
Transceiver52M/device/bladerf/Makefile \
tests/Makefile \
tests/CommonLibs/Makefile \
tests/Transceiver52M/Makefile \

View File

@@ -353,14 +353,14 @@ static int l1ctl_rx_fbsb_req(struct l1ctl_link *l1l, struct msgb *msg)
l1l->fbsb_conf_sent = false;
/* Only if current ARFCN differs */
// if (l1l->trx->band_arfcn != band_arfcn) {
if (l1l->trx->band_arfcn != band_arfcn) {
/* Update current ARFCN */
l1l->trx->band_arfcn = band_arfcn;
/* Tune transceiver to required ARFCN */
trx_if_cmd_rxtune(l1l->trx, band_arfcn);
trx_if_cmd_txtune(l1l->trx, band_arfcn);
// }
}
/* Transceiver might have been powered on before, e.g.
* in case of sending L1CTL_FBSB_REQ due to signal loss. */
@@ -373,8 +373,7 @@ static int l1ctl_rx_fbsb_req(struct l1ctl_link *l1l, struct msgb *msg)
l1l->fbsb_timer.data = l1l;
l1l->fbsb_timer.cb = fbsb_timer_cb;
LOGP(DL1C, LOGL_INFO, "Starting FBSB timer %u ms\n", timeout * GSM_TDMA_FN_DURATION_uS / 1000);
osmo_timer_schedule(&l1l->fbsb_timer, 35,
timeout * GSM_TDMA_FN_DURATION_uS);
osmo_timer_schedule(&l1l->fbsb_timer, 2, timeout * GSM_TDMA_FN_DURATION_uS);
exit:
msgb_free(msg);

View File

@@ -62,7 +62,7 @@ static struct log_info_cat trx_log_info_cat[] = {
.name = "DSCH",
.description = "Scheduler management",
.color = "\033[1;36m",
.enabled = 1, .loglevel = LOGL_NOTICE,
.enabled = 0, .loglevel = LOGL_NOTICE,
},
[DSCHD] = {
.name = "DSCHD",

View File

@@ -47,7 +47,9 @@
#include "logging.h"
#include "scheduler.h"
#ifdef IPCIF
#include "../Transceiver52M/l1if.h"
#endif
static struct value_string trx_evt_names[] = {
{ 0, NULL } /* no events? */
@@ -146,13 +148,19 @@ static void trx_ctrl_send(struct trx_instance *trx)
return;
tcm = llist_entry(trx->trx_ctrl_list.next, struct trx_ctrl_msg, list);
#ifdef IPCIF
char* cmd = malloc(TRXC_BUF_SIZE);
memcpy(cmd, tcm->cmd, TRXC_BUF_SIZE);
/* Send command */
LOGP(DTRX, LOGL_DEBUG, "Sending control '%s'\n", tcm->cmd);
trxif_to_trx_c(cmd);
// send(trx->trx_ofd_ctrl.fd, tcm->cmd, strlen(tcm->cmd) + 1, 0);
#else
/* Send command */
LOGP(DTRX, LOGL_DEBUG, "Sending control '%s'\n", tcm->cmd);
send(trx->trx_ofd_ctrl.fd, tcm->cmd, strlen(tcm->cmd) + 1, 0);
#endif
/* Trigger state machine */
if (trx->fsm->state != TRX_STATE_RSP_WAIT) {
@@ -476,7 +484,9 @@ static int trx_ctrl_read_cb(struct osmo_fd *ofd, unsigned int what)
struct trx_ctrl_msg *tcm;
int resp, rsp_len;
char buf[TRXC_BUF_SIZE], *p;
ssize_t read_len;
#ifdef IPCIF
char* response = trxif_from_trx_c();
if (!response) {
LOGP(DTRX, LOGL_ERROR, "read() failed with rc=%zd\n", response);
@@ -484,6 +494,14 @@ static int trx_ctrl_read_cb(struct osmo_fd *ofd, unsigned int what)
}
memcpy(buf, response, TRXC_BUF_SIZE);
free(response);
#else
read_len = read(ofd->fd, buf, sizeof(buf) - 1);
if (read_len <= 0) {
LOGP(DTRX, LOGL_ERROR, "read() failed with rc=%zd\n", read_len);
return read_len;
}
buf[read_len] = '\0';
#endif
if (!!strncmp(buf, "RSP ", 4)) {
LOGP(DTRX, LOGL_NOTICE, "Unknown message on CTRL port: %s\n", buf);
@@ -584,31 +602,42 @@ rsp_error:
static int trx_data_rx_cb(struct osmo_fd *ofd, unsigned int what)
{
struct trx_instance *trx = ofd->data;
struct trx_meas_set meas;
uint8_t buf[TRXD_BUF_SIZE];
ssize_t read_len;
read_len = read(ofd->fd, buf, sizeof(buf));
if (read_len <= 0) {
LOGP(DTRXD, LOGL_ERROR, "read() failed with rc=%zd\n", read_len);
return read_len;
}
if (read_len != 158) {
LOGP(DTRXD, LOGL_ERROR,
"Got data message with invalid "
"length '%zd'\n",
read_len);
return -EINVAL;
}
return trx_data_rx_handler(trx, buf);
}
int trx_data_rx_handler(struct trx_instance *trx, uint8_t *buf)
{
struct trx_meas_set meas;
sbit_t bits[148];
int8_t rssi, tn;
int16_t toa256;
uint32_t fn;
ssize_t read_len;
struct trxd_from_trx* rcvd = trxif_from_trx_d();
if (!rcvd) {
LOGP(DTRX, LOGL_ERROR, "read() failed with rc=%zd\n", rcvd);
return rcvd;
}
tn = rcvd->ts;
fn = rcvd->fn;
rssi = -(int8_t) rcvd->rssi;
toa256 = (int16_t) rcvd->toa;
tn = buf[0];
fn = osmo_load32be(buf + 1);
rssi = -(int8_t)buf[5];
toa256 = ((int16_t)(buf[6] << 8) | buf[7]);
/* Copy and convert bits {254..0} to sbits {-127..127} */
//osmo_ubit2sbit(bits, rcvd->symbols, 148);
memcpy(bits, rcvd->symbols, 148);
free(rcvd);
//osmo_ubit2sbit(bits, buf + 8, 148);
memcpy(bits, buf + 8, 148);
if (tn >= 8) {
LOGP(DTRXD, LOGL_ERROR, "Illegal TS %d\n", tn);
@@ -640,15 +669,52 @@ static int trx_data_rx_cb(struct osmo_fd *ofd, unsigned int what)
return 0;
}
extern void tx_external_transceiver(uint8_t *burst) __attribute__((weak));
int trx_if_tx_burst(struct trx_instance *trx, uint8_t tn, uint32_t fn,
uint8_t pwr, const ubit_t *bits)
{
#ifdef IPCIF
struct trxd_to_trx* t = malloc(sizeof(struct trxd_to_trx));
t->ts = tn;
t->fn = fn;
t->txlev = pwr;
memcpy(t->symbols, bits, 148);
trxif_to_trx_d(t);
#else
uint8_t buf[TRXD_BUF_SIZE];
/**
* We must be sure that we have clock,
* and we have sent all control data
*
* TODO: introduce proper state machines for both
* transceiver and its TRXC interface.
*/
#if 0
if (trx->fsm->state != TRX_STATE_ACTIVE) {
LOGP(DTRXD, LOGL_ERROR, "Ignoring TX data, "
"transceiver isn't ready\n");
return -EAGAIN;
}
#endif
LOGP(DTRXD, LOGL_DEBUG, "TX burst tn=%u fn=%u pwr=%u\n", tn, fn, pwr);
buf[0] = tn;
osmo_store32be(fn, buf + 1);
buf[5] = pwr;
/* Copy ubits {0,1} */
memcpy(buf + 6, bits, 148);
/* Send data to transceiver */
if (tx_external_transceiver)
tx_external_transceiver(buf);
else
send(trx->trx_ofd_data.fd, buf, 154, 0);
#endif
return 0;
}
@@ -683,6 +749,7 @@ struct trx_instance *trx_if_open(void *tall_ctx,
/* Initialize CTRL queue */
INIT_LLIST_HEAD(&trx->trx_ctrl_list);
#ifdef IPCIF
rc = eventfd(0, 0);
osmo_fd_setup(get_c_fd(), rc, OSMO_FD_READ, trx_ctrl_read_cb, trx, 0);
osmo_fd_register(get_c_fd());
@@ -690,8 +757,25 @@ struct trx_instance *trx_if_open(void *tall_ctx,
rc = eventfd(0, 0);
osmo_fd_setup(get_d_fd(), rc, OSMO_FD_READ, trx_data_rx_cb, trx, 0);
osmo_fd_register(get_d_fd());
#else
/* Open sockets */
rc = trx_udp_open(trx, &trx->trx_ofd_ctrl, local_host, base_port + 101, remote_host, base_port + 1,
trx_ctrl_read_cb);
if (rc < 0)
goto udp_error;
rc = trx_udp_open(trx, &trx->trx_ofd_data, local_host, base_port + 102, remote_host, base_port + 2,
trx_data_rx_cb);
if (rc < 0)
goto udp_error;
#endif
return trx;
udp_error:
LOGP(DTRX, LOGL_ERROR, "Couldn't establish UDP connection\n");
osmo_fsm_inst_free(trx->fsm);
talloc_free(trx);
return NULL;
}
/* Flush pending control messages */
@@ -723,8 +807,13 @@ void trx_if_close(struct trx_instance *trx)
trx_if_flush_ctrl(trx);
/* Close sockets */
#ifdef IPCIF
close(get_c_fd()->fd);
close(get_d_fd()->fd);
#else
trx_udp_close(&trx->trx_ofd_ctrl);
trx_udp_close(&trx->trx_ofd_data);
#endif
/* Free memory */
osmo_fsm_inst_free(trx->fsm);

View File

@@ -22,8 +22,10 @@ enum trx_fsm_states {
};
struct trx_instance {
// struct osmo_fd trx_ofd_ctrl;
// struct osmo_fd trx_ofd_data;
#ifndef IPCIF
struct osmo_fd trx_ofd_ctrl;
struct osmo_fd trx_ofd_data;
#endif
struct osmo_timer_list trx_ctrl_timer;
struct llist_head trx_ctrl_list;
@@ -82,3 +84,4 @@ int trx_if_cmd_measure(struct trx_instance *trx,
int trx_if_tx_burst(struct trx_instance *trx, uint8_t tn, uint32_t fn,
uint8_t pwr, const ubit_t *bits);
int trx_data_rx_handler(struct trx_instance *trx, uint8_t *buf);

View File

@@ -21,6 +21,7 @@
*
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
@@ -29,6 +30,7 @@
#include <unistd.h>
#include <signal.h>
#include <time.h>
#include <pthread.h>
#include <arpa/inet.h>
@@ -269,14 +271,28 @@ static void signal_handler(int signum)
}
}
extern void init_external_transceiver(int argc, char **argv);
extern void stop_trx();
extern volatile bool gshutdown;
extern void init_external_transceiver(struct trx_instance *trx, int argc, char **argv) __attribute__((weak));
extern void close_external_transceiver(int argc, char **argv) __attribute__((weak));
int main(int argc, char **argv)
{
int rc = 0;
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(3, &cpuset);
pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
int prio = sched_get_priority_max(SCHED_RR) - 5;
struct sched_param param;
param.sched_priority = prio;
int rv = sched_setscheduler(0, SCHED_RR, &param);
if (rv < 0) {
LOGP(DAPP, LOGL_ERROR, "Failed to set sched!\n");
exit(0);
}
printf("%s", COPYRIGHT);
init_defaults();
handle_options(argc, argv);
@@ -355,14 +371,14 @@ int main(int argc, char **argv)
/* Initialize pseudo-random generator */
srand(time(NULL));
init_external_transceiver(argc, argv);
while (!app_data.quit)
osmo_select_main(0);
gshutdown = true;
stop_trx();
if (init_external_transceiver)
init_external_transceiver(app_data.trx, argc, argv);
else
while (!app_data.quit)
osmo_select_main(0);
if (close_external_transceiver)
close_external_transceiver(argc, argv);
exit:
/* Close active connections */