Files
osmo-trx/tests/CommonLibs/InterthreadTest.cpp
Eric 5561f1129d clean up mutex, scopedlock, and signal classes
This also uncovers very interesting design decisions like the copying of
mutexes and condition vars depending on recursive locks that were
previously hidden by shady c function calls..
We have perfectly good c++11 versions for all of that.

While we're at it, also use the initialization list for the other (still
copy constructable) vectors, which cleans up the radio interfaces.

Change-Id: Idc9e3b1144c5b93f5dad2f8e0e30f1058477aa52
2022-12-23 13:41:30 +00:00

141 lines
2.8 KiB
C++

/*
* Copyright 2008 Free Software Foundation, Inc.
*
* SPDX-License-Identifier: AGPL-3.0+
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Threads.h"
#include "Interthread.h"
#include <iostream>
#include <mutex>
std::mutex dbg_cout;
InterthreadQueue<int> gQ;
InterthreadMap<int,int> gMap;
int q_last_read_val = -1;
int q_last_write_val;
int m_last_read_val;
int m_last_write_val;
#define CERR(text) { dbg_cout.lock() ; std::cerr << text; dbg_cout.unlock(); }
void* qWriter(void*)
{
int *p;
for (int i=0; i<20; i++) {
p = new int;
*p = i;
CERR("queue write " << *p);
gQ.write(p);
q_last_write_val = i;
if (random()%2) sleep(1);
}
p = new int;
*p = -1;
gQ.write(p);
return NULL;
}
void* qReader(void*)
{
bool done = false;
while (!done) {
int *p = gQ.read();
CERR("queue read " << *p);
if (*p<0) {
assert(q_last_read_val == 19 && *p == -1);
done = true;
} else {
assert(q_last_read_val == *p - 1);
q_last_read_val = *p;
}
delete p;
}
return NULL;
}
void* mapWriter(void*)
{
int *p;
for (int i=0; i<20; i++) {
p = new int;
*p = i;
CERR("map write " << *p);
gMap.write(i,p);
m_last_write_val = i;
if (random()%2) sleep(1);
}
return NULL;
}
void* mapReader(void*)
{
for (int i=0; i<20; i++) {
int *p = gMap.read(i);
CERR("map read " << *p);
assert(*p == i);
m_last_read_val = *p;
// InterthreadMap will delete the pointers
// delete p;
}
return NULL;
}
int main(int argc, char *argv[])
{
Thread qReaderThread;
qReaderThread.start(qReader,NULL);
Thread mapReaderThread;
mapReaderThread.start(mapReader,NULL);
Thread qWriterThread;
qWriterThread.start(qWriter,NULL);
Thread mapWriterThread;
mapWriterThread.start(mapWriter,NULL);
qReaderThread.join();
qWriterThread.join();
mapReaderThread.join();
mapWriterThread.join();
assert(q_last_write_val == 19);
assert(q_last_read_val == 19);
assert(m_last_write_val == 19);
assert(m_last_read_val == 19);
printf("Done\n");
}
// vim: ts=4 sw=4