Files
osmo-trx/CommonLibs/Interthread.h
Eric 5561f1129d clean up mutex, scopedlock, and signal classes
This also uncovers very interesting design decisions like the copying of
mutexes and condition vars depending on recursive locks that were
previously hidden by shady c function calls..
We have perfectly good c++11 versions for all of that.

While we're at it, also use the initialization list for the other (still
copy constructable) vectors, which cleans up the radio interfaces.

Change-Id: Idc9e3b1144c5b93f5dad2f8e0e30f1058477aa52
2022-12-23 13:41:30 +00:00

699 lines
14 KiB
C++

/*
* Copyright 2008, 2011 Free Software Foundation, Inc.
*
* SPDX-License-Identifier: AGPL-3.0+
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef INTERTHREAD_H
#define INTERTHREAD_H
#include "Timeval.h"
#include "Threads.h"
#include "LinkedLists.h"
#include <map>
#include <vector>
#include <queue>
/**@defgroup Templates for interthread mechanisms. */
//@{
/** Pointer FIFO for interthread operations. */
// (pat) The elements in the queue are type T*, and
// the Fifo class implements the underlying queue.
// The default is class PointerFIFO, which does not place any restrictions on the type of T,
// and is implemented by allocating auxiliary structures for the queue,
// or SingleLinkedList, which implements the queue using an internal pointer in type T,
// which must implement the functional interface of class SingleLinkListNode,
// namely: functions T*next() and void setNext(T*).
template <class T, class Fifo=PointerFIFO> class InterthreadQueue {
protected:
Fifo mQ;
mutable Mutex mLock;
mutable Signal mWriteSignal;
public:
/** Delete contents. */
void clear()
{
ScopedLock lock(mLock);
while (mQ.size()>0) delete (T*)mQ.get();
}
/** Empty the queue, but don't delete. */
void flushNoDelete()
{
ScopedLock lock(mLock);
while (mQ.size()>0) mQ.get();
}
~InterthreadQueue()
{ clear(); }
size_t size() const
{
ScopedLock lock(mLock);
return mQ.size();
}
size_t totalSize() const // pat added
{
ScopedLock lock(mLock);
return mQ.totalSize();
}
/**
Blocking read.
@return Pointer to object (will not be NULL).
*/
T* read()
{
ScopedLock lock(mLock);
T* retVal = (T*)mQ.get();
while (retVal==NULL) {
mWriteSignal.wait(mLock);
retVal = (T*)mQ.get();
}
return retVal;
}
/** Non-blocking peek at the first element; returns NULL if empty. */
T* front()
{
ScopedLock lock(mLock);
return (T*) mQ.front();
}
/**
Blocking read with a timeout.
@param timeout The read timeout in ms.
@return Pointer to object or NULL on timeout.
*/
T* read(unsigned timeout)
{
if (timeout==0) return readNoBlock();
Timeval waitTime(timeout);
ScopedLock lock(mLock);
while ((mQ.size()==0) && (!waitTime.passed()))
mWriteSignal.wait(mLock,waitTime.remaining());
T* retVal = (T*)mQ.get();
return retVal;
}
/**
Non-blocking read.
@return Pointer to object or NULL if FIFO is empty.
*/
T* readNoBlock()
{
ScopedLock lock(mLock);
return (T*)mQ.get();
}
/** Non-blocking write. */
void write(T* val)
{
ScopedLock lock(mLock);
mQ.put(val);
mWriteSignal.signal();
}
/** Non-block write to the front of the queue. */
void write_front(T* val) // pat added
{
ScopedLock lock(mLock);
mQ.push_front(val);
mWriteSignal.signal();
}
};
// (pat) Identical to above but with the threading problem fixed.
template <class T, class Fifo=PointerFIFO> class InterthreadQueue2 {
protected:
Fifo mQ;
mutable Mutex mLock;
mutable Signal mWriteSignal;
public:
/** Delete contents. */
void clear()
{
ScopedLock lock(mLock);
while (mQ.size()>0) delete (T*)mQ.get();
}
/** Empty the queue, but don't delete. */
void flushNoDelete()
{
ScopedLock lock(mLock);
while (mQ.size()>0) mQ.get();
}
~InterthreadQueue2()
{ clear(); }
size_t size() const
{
ScopedLock lock(mLock);
return mQ.size();
}
size_t totalSize() const // pat added
{
ScopedLock lock(mLock);
return mQ.totalSize();
}
/**
Blocking read.
@return Pointer to object (will not be NULL).
*/
T* read()
{
ScopedLock lock(mLock);
T* retVal = (T*)mQ.get();
while (retVal==NULL) {
mWriteSignal.wait(mLock);
retVal = (T*)mQ.get();
}
return retVal;
}
/** Non-blocking peek at the first element; returns NULL if empty. */
T* front()
{
ScopedLock lock(mLock);
return (T*) mQ.front();
}
/**
Blocking read with a timeout.
@param timeout The read timeout in ms.
@return Pointer to object or NULL on timeout.
*/
T* read(unsigned timeout)
{
if (timeout==0) return readNoBlock();
Timeval waitTime(timeout);
ScopedLock lock(mLock);
while ((mQ.size()==0) && (!waitTime.passed()))
mWriteSignal.wait(mLock,waitTime.remaining());
T* retVal = (T*)mQ.get();
return retVal;
}
/**
Non-blocking read.
@return Pointer to object or NULL if FIFO is empty.
*/
T* readNoBlock()
{
ScopedLock lock(mLock);
return (T*)mQ.get();
}
/** Non-blocking write. */
void write(T* val)
{
// (pat) The Mutex mLock must be released before signaling the mWriteSignal condition.
// This is an implicit requirement of pthread_cond_wait() called from signal().
// If you do not do that, the InterthreadQueue read() function cannot start
// because the mutex is still locked by the thread calling the write(),
// so the read() thread yields its immediate execution opportunity.
// This recurs (and the InterthreadQueue fills up with data)
// until the read thread's accumulated temporary priority causes it to
// get a second pre-emptive activation over the writing thread,
// resulting in bursts of activity by the read thread.
{ ScopedLock lock(mLock);
mQ.put(val);
}
mWriteSignal.signal();
}
/** Non-block write to the front of the queue. */
void write_front(T* val) // pat added
{
// (pat) See comments above.
{ ScopedLock lock(mLock);
mQ.push_front(val);
}
mWriteSignal.signal();
}
};
/** Pointer FIFO for interthread operations. */
template <class T> class InterthreadQueueWithWait {
protected:
PointerFIFO mQ;
mutable Mutex mLock;
mutable Signal mWriteSignal;
mutable Signal mReadSignal;
virtual void freeElement(T* element) const { delete element; };
public:
/** Delete contents. */
void clear()
{
ScopedLock lock(mLock);
while (mQ.size()>0) freeElement((T*)mQ.get());
mReadSignal.signal();
}
virtual ~InterthreadQueueWithWait()
{ clear(); }
size_t size() const
{
ScopedLock lock(mLock);
return mQ.size();
}
/**
Blocking read.
@return Pointer to object (will not be NULL).
*/
T* read()
{
ScopedLock lock(mLock);
T* retVal = (T*)mQ.get();
while (retVal==NULL) {
mWriteSignal.wait(mLock);
retVal = (T*)mQ.get();
}
mReadSignal.signal();
return retVal;
}
/**
Blocking read with a timeout.
@param timeout The read timeout in ms.
@return Pointer to object or NULL on timeout.
*/
T* read(unsigned timeout)
{
if (timeout==0) return readNoBlock();
Timeval waitTime(timeout);
ScopedLock lock(mLock);
while ((mQ.size()==0) && (!waitTime.passed()))
mWriteSignal.wait(mLock,waitTime.remaining());
T* retVal = (T*)mQ.get();
if (retVal!=NULL) mReadSignal.signal();
return retVal;
}
/**
Non-blocking read.
@return Pointer to object or NULL if FIFO is empty.
*/
T* readNoBlock()
{
ScopedLock lock(mLock);
T* retVal = (T*)mQ.get();
if (retVal!=NULL) mReadSignal.signal();
return retVal;
}
/** Non-blocking write. */
void write(T* val)
{
// (pat) 8-14: Taking out the threading problem fix temporarily for David to use in the field.
ScopedLock lock(mLock);
mQ.put(val);
mWriteSignal.signal();
}
/** Wait until the queue falls below a low water mark. */
// (pat) This function suffers from the same problem as documented
// at InterthreadQueue.write(), but I am not fixing it because I cannot test it.
// The caller of this function will eventually get to run, just not immediately
// after the mReadSignal condition is fulfilled.
void wait(size_t sz=0)
{
ScopedLock lock(mLock);
while (mQ.size()>sz) mReadSignal.wait(mLock);
}
};
/** Thread-safe map of pointers to class D, keyed by class K. */
template <class K, class D > class InterthreadMap {
protected:
typedef std::map<K,D*> Map;
Map mMap;
mutable Mutex mLock;
Signal mWriteSignal;
public:
void clear()
{
// Delete everything in the map.
ScopedLock lock(mLock);
typename Map::iterator iter = mMap.begin();
while (iter != mMap.end()) {
delete iter->second;
++iter;
}
mMap.clear();
}
~InterthreadMap() { clear(); }
/**
Non-blocking write.
@param key The index to write to.
@param wData Pointer to data, not to be deleted until removed from the map.
*/
void write(const K &key, D * wData)
{
ScopedLock lock(mLock);
typename Map::iterator iter = mMap.find(key);
if (iter!=mMap.end()) {
delete iter->second;
iter->second = wData;
} else {
mMap[key] = wData;
}
mWriteSignal.broadcast();
}
/**
Non-blocking read with element removal.
@param key Key to read from.
@return Pointer at key or NULL if key not found, to be deleted by caller.
*/
D* getNoBlock(const K& key)
{
ScopedLock lock(mLock);
typename Map::iterator iter = mMap.find(key);
if (iter==mMap.end()) return NULL;
D* retVal = iter->second;
mMap.erase(iter);
return retVal;
}
/**
Blocking read with a timeout and element removal.
@param key The key to read from.
@param timeout The blocking timeout in ms.
@return Pointer at key or NULL on timeout, to be deleted by caller.
*/
D* get(const K &key, unsigned timeout)
{
if (timeout==0) return getNoBlock(key);
Timeval waitTime(timeout);
ScopedLock lock(mLock);
typename Map::iterator iter = mMap.find(key);
while ((iter==mMap.end()) && (!waitTime.passed())) {
mWriteSignal.wait(mLock,waitTime.remaining());
iter = mMap.find(key);
}
if (iter==mMap.end()) return NULL;
D* retVal = iter->second;
mMap.erase(iter);
return retVal;
}
/**
Blocking read with and element removal.
@param key The key to read from.
@return Pointer at key, to be deleted by caller.
*/
D* get(const K &key)
{
ScopedLock lock(mLock);
typename Map::iterator iter = mMap.find(key);
while (iter==mMap.end()) {
mWriteSignal.wait(mLock);
iter = mMap.find(key);
}
D* retVal = iter->second;
mMap.erase(iter);
return retVal;
}
/**
Remove an entry and delete it.
@param key The key of the entry to delete.
@return True if it was actually found and deleted.
*/
bool remove(const K &key )
{
D* val = getNoBlock(key);
if (!val) return false;
delete val;
return true;
}
/**
Non-blocking read.
@param key Key to read from.
@return Pointer at key or NULL if key not found.
*/
D* readNoBlock(const K& key) const
{
D* retVal=NULL;
ScopedLock lock(mLock);
typename Map::const_iterator iter = mMap.find(key);
if (iter!=mMap.end()) retVal = iter->second;
return retVal;
}
/**
Blocking read with a timeout.
@param key The key to read from.
@param timeout The blocking timeout in ms.
@return Pointer at key or NULL on timeout.
*/
D* read(const K &key, unsigned timeout)
{
if (timeout==0) return readNoBlock(key);
ScopedLock lock(mLock);
Timeval waitTime(timeout);
typename Map::const_iterator iter = mMap.find(key);
while ((iter==mMap.end()) && (!waitTime.passed())) {
mWriteSignal.wait(mLock,waitTime.remaining());
iter = mMap.find(key);
}
if (iter==mMap.end()) return NULL;
D* retVal = iter->second;
return retVal;
}
/**
Blocking read.
@param key The key to read from.
@return Pointer at key.
*/
D* read(const K &key)
{
ScopedLock lock(mLock);
typename Map::const_iterator iter = mMap.find(key);
while (iter==mMap.end()) {
mWriteSignal.wait(mLock);
iter = mMap.find(key);
}
D* retVal = iter->second;
return retVal;
}
};
/** This class is used to provide pointer-based comparison in priority_queues. */
template <class T> class PointerCompare {
public:
/** Compare the objects pointed to, not the pointers themselves. */
bool operator()(const T *v1, const T *v2)
{ return (*v1)>(*v2); }
};
/**
Priority queue for interthread operations.
Passes pointers to objects.
*/
template <class T, class C = std::vector<T*>, class Cmp = PointerCompare<T> > class InterthreadPriorityQueue {
protected:
std::priority_queue<T*,C,Cmp> mQ;
mutable Mutex mLock;
mutable Signal mWriteSignal;
public:
/** Clear the FIFO. */
void clear()
{
ScopedLock lock(mLock);
while (mQ.size()>0) {
T* ptr = mQ.top();
mQ.pop();
delete ptr;
}
}
~InterthreadPriorityQueue()
{
clear();
}
size_t size() const
{
ScopedLock lock(mLock);
return mQ.size();
}
/** Non-blocking read. */
T* readNoBlock()
{
ScopedLock lock(mLock);
T* retVal = NULL;
if (mQ.size()!=0) {
retVal = mQ.top();
mQ.pop();
}
return retVal;
}
/** Blocking read. */
T* read()
{
ScopedLock lock(mLock);
T* retVal;
while (mQ.size()==0) mWriteSignal.wait(mLock);
retVal = mQ.top();
mQ.pop();
return retVal;
}
/** Non-blocking write. */
void write(T* val)
{
// (pat) 8-14: Taking out the threading problem fix temporarily for David to use in the field.
ScopedLock lock(mLock);
mQ.push(val);
mWriteSignal.signal();
}
};
class Semaphore {
private:
bool mFlag;
Signal mSignal;
mutable Mutex mLock;
public:
Semaphore()
:mFlag(false)
{ }
void post()
{
ScopedLock lock(mLock);
mFlag=true;
mSignal.signal();
}
void get()
{
ScopedLock lock(mLock);
while (!mFlag) mSignal.wait(mLock);
mFlag=false;
}
bool semtry()
{
ScopedLock lock(mLock);
bool retVal = mFlag;
mFlag = false;
return retVal;
}
};
//@}
#endif
// vim: ts=4 sw=4