Files
osmo-trx/Transceiver52M/ms/ms_upper.cpp
Eric Wild 621a49eb69 ms: adjust float<->integral type conversion
Given integral type A and non integral type B and depending on rounding
mode, optimization, compiler, and phase of the moon A(A)*B != A(A*B) so
split the two cases.

While at it, also make the template automagically work for complex types
instead of requiring manual casts, the general idea here is to allow
inlining and vectorization by treating all args as plain arrays, which is fine.

This works as expected with -tune=native, x64 implies sse2, and we do not
target any neon-less arm versions either.

Clang only array length hints can improve this even more.

Change-Id: I93f077f967daf2ed382d12cc20a54846b3688634
2023-03-02 18:22:37 +01:00

500 lines
14 KiB
C++

/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "sigProcLib.h"
#include "ms.h"
#include <signalVector.h>
#include <radioVector.h>
#include <radioInterface.h>
#include <grgsm_vitac/grgsm_vitac.h>
extern "C" {
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <getopt.h>
#include <unistd.h>
#include <signal.h>
#include <errno.h>
#include <time.h>
#include <fenv.h>
#include "sch.h"
#include "convolve.h"
#include "convert.h"
#ifdef LSANDEBUG
void __lsan_do_recoverable_leak_check();
#endif
}
#include "ms_upper.h"
namespace trxcon
{
extern "C" {
#include <osmocom/core/fsm.h>
#include <osmocom/core/msgb.h>
#include <osmocom/core/talloc.h>
#include <osmocom/core/signal.h>
#include <osmocom/core/select.h>
#include <osmocom/gsm/gsm_utils.h>
#include <osmocom/core/logging.h>
#include <osmocom/bb/trxcon/logging.h>
#include <osmocom/bb/trxcon/trxcon.h>
#include <osmocom/bb/trxcon/trxcon_fsm.h>
#include <osmocom/bb/trxcon/phyif.h>
#include <osmocom/bb/trxcon/l1ctl_server.h>
}
struct trxcon_inst *g_trxcon;
// trx_instance *trxcon_instance; // local handle
struct internal_q_tx_buf {
trxcon_phyif_burst_req r;
uint8_t buf[148];
};
using tx_queue_t = spsc_cond<8 * 1, internal_q_tx_buf, true, false>;
using cmd_queue_t = spsc_cond<8 * 1, trxcon_phyif_cmd, true, false>;
using cmdr_queue_t = spsc_cond<8 * 1, trxcon_phyif_rsp, false, false>;
static tx_queue_t txq;
static cmd_queue_t cmdq_to_phy;
static cmdr_queue_t cmdq_from_phy;
extern bool trxc_l1ctl_init(void *tallctx);
} // namespace trxcon
extern "C" void trxc_log_init(void *tallctx);
#ifdef LOG
#undef LOG
#define LOG(...) upper_trx::dummy_log()
#endif
#define DBGLG(...) upper_trx::dummy_log()
std::atomic<bool> g_exit_flag;
void upper_trx::start_threads()
{
thr_control = std::thread([this] {
set_name_aff_sched("upper_ctrl", 1, SCHED_RR, sched_get_priority_max(SCHED_RR));
while (!g_exit_flag) {
driveControl();
}
});
msleep(1);
thr_tx = std::thread([this] {
set_name_aff_sched("upper_tx", 1, SCHED_FIFO, sched_get_priority_max(SCHED_FIFO) - 1);
while (!g_exit_flag) {
driveTx();
}
});
// atomic ensures data is not written to q until loop reads
start_lower_ms();
set_name_aff_sched("upper_rx", 1, SCHED_FIFO, sched_get_priority_max(SCHED_RR) - 5);
while (!g_exit_flag) {
// set_upper_ready(true);
driveReceiveFIFO();
trxcon::osmo_select_main(1);
trxcon::trxcon_phyif_rsp r;
if (trxcon::cmdq_from_phy.spsc_pop(&r)) {
DBGLG() << "HAVE RESP:" << r.type << std::endl;
trxcon_phyif_handle_rsp(trxcon::g_trxcon, &r);
}
}
#ifdef LSANDEBUG
std::thread([this] {
set_name_aff_sched("leakcheck", 1, SCHED_FIFO, sched_get_priority_max(SCHED_FIFO) - 10);
while (1) {
std::this_thread::sleep_for(std::chrono::seconds{ 5 });
__lsan_do_recoverable_leak_check();
}
}).detach();
#endif
}
void upper_trx::start_lower_ms()
{
ms_trx::start();
}
// signalvector is owning despite claiming not to, but we can pretend, too..
static void static_free(void *wData){};
static void *static_alloc(size_t newSize)
{
return 0;
};
bool upper_trx::pullRadioVector(GSM::Time &wTime, int &RSSI, int &timingOffset)
{
float pow, avg = 1.0;
const auto zero_pad_len = 40; // give the VA some runway for misaligned bursts
const auto workbuf_size = zero_pad_len + ONE_TS_BURST_LEN + zero_pad_len;
static complex workbuf[workbuf_size];
static signalVector sv(workbuf, zero_pad_len, ONE_TS_BURST_LEN, static_alloc, static_free);
one_burst e;
auto ss = reinterpret_cast<std::complex<float> *>(&workbuf[zero_pad_len]);
std::fill(workbuf, workbuf + workbuf_size, 0);
// assert(sv.begin() == &workbuf[40]);
while (!rxqueue.spsc_pop(&e)) {
rxqueue.spsc_prep_pop();
}
wTime = e.gsmts;
const auto is_sch = gsm_sch_check_ts(wTime.TN(), wTime.FN());
const auto is_fcch = gsm_fcch_check_ts(wTime.TN(), wTime.FN());
trxcon::trxcon_phyif_rtr_ind i = { static_cast<uint32_t>(wTime.FN()), static_cast<uint8_t>(wTime.TN()) };
trxcon::trxcon_phyif_rtr_rsp r = {};
trxcon_phyif_handle_rtr_ind(trxcon::g_trxcon, &i, &r);
if (!(r.flags & TRXCON_PHYIF_RTR_F_ACTIVE))
return false;
if (is_fcch) {
// return trash
return true;
}
if (is_sch) {
for (int i = 0; i < 148; i++)
(demodded_softbits)[i] = (e.sch_bits[i]);
RSSI = 10;
timingOffset = 0;
return true;
}
convert_and_scale(ss, e.burst, ONE_TS_BURST_LEN * 2, 1.f / float(rxFullScale));
pow = energyDetect(sv, 20 * 4 /*sps*/);
if (pow < -1) {
LOG(ALERT) << "Received empty burst";
return false;
}
avg = sqrt(pow);
{
float ncmax;
std::complex<float> chan_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
auto normal_burst_start = get_norm_chan_imp_resp(ss, &chan_imp_resp[0], &ncmax, mTSC);
#ifdef DBGXX
float dcmax;
std::complex<float> chan_imp_resp2[CHAN_IMP_RESP_LENGTH * d_OSR];
auto dummy_burst_start = get_norm_chan_imp_resp(ss, &chan_imp_resp2[0], &dcmax, TS_DUMMY);
auto is_nb = ncmax > dcmax;
// DBGLG() << " U " << (is_nb ? "NB" : "DB") << "@ o nb: " << normal_burst_start
// << " o db: " << dummy_burst_start << std::endl;
#endif
normal_burst_start = normal_burst_start < 39 ? normal_burst_start : 39;
normal_burst_start = normal_burst_start > -39 ? normal_burst_start : -39;
#ifdef DBGXX
// fprintf(stderr, "%s %d\n", (is_nb ? "N":"D"), burst_time.FN());
// if (is_nb)
#endif
detect_burst(ss, &chan_imp_resp[0], normal_burst_start, demodded_softbits);
#ifdef DBGXX
// else
// detect_burst(ss, &chan_imp_resp2[0], dummy_burst_start, outbin);
#endif
}
RSSI = (int)floor(20.0 * log10(rxFullScale / avg));
// FIXME: properly handle offset, sch/nb alignment diff? handled by lower anyway...
timingOffset = (int)round(0);
return true;
}
void upper_trx::driveReceiveFIFO()
{
int RSSI;
int TOA; // in 1/256 of a symbol
GSM::Time burstTime;
if (!mOn)
return;
if (pullRadioVector(burstTime, RSSI, TOA)) {
trxcon::trxcon_phyif_burst_ind bi;
bi.fn = burstTime.FN();
bi.tn = burstTime.TN();
bi.rssi = RSSI;
bi.toa256 = TOA;
bi.burst = (sbit_t *)demodded_softbits;
bi.burst_len = sizeof(demodded_softbits);
trxcon_phyif_handle_burst_ind(trxcon::g_trxcon, &bi);
}
struct trxcon::trxcon_phyif_rts_ind rts {
static_cast<uint32_t>(burstTime.FN()), static_cast<uint8_t>(burstTime.TN())
};
trxcon_phyif_handle_rts_ind(trxcon::g_trxcon, &rts);
}
void upper_trx::driveTx()
{
trxcon::internal_q_tx_buf e;
static BitVector newBurst(sizeof(e.buf));
while (!trxcon::txq.spsc_pop(&e)) {
trxcon::txq.spsc_prep_pop();
}
// ensure our tx cb is tickled and can exit
if (g_exit_flag) {
blade_sample_type dummy[10] = {};
submit_burst_ts(dummy, 10, 1);
return;
}
trxcon::internal_q_tx_buf *burst = &e;
#ifdef TXDEBUG
DBGLG() << "got burst!" << burst->r.fn << ":" << burst->ts << " current: " << timekeeper.gsmtime().FN()
<< " dff: " << (int64_t)((int64_t)timekeeper.gsmtime().FN() - (int64_t)burst->r.fn) << std::endl;
#endif
auto currTime = GSM::Time(burst->r.fn, burst->r.tn);
int RSSI = (int)burst->r.pwr;
BitVector::iterator itr = newBurst.begin();
auto *bufferItr = burst->buf;
while (itr < newBurst.end())
*itr++ = *bufferItr++;
auto txburst = modulateBurst(newBurst, 8 + (currTime.TN() % 4 == 0), 4);
scaleVector(*txburst, txFullScale * pow(10, -RSSI / 10));
// float -> int16
blade_sample_type burst_buf[txburst->size()];
convert_and_scale(burst_buf, txburst->begin(), txburst->size() * 2, 1);
#ifdef TXDEBUG
auto check = signalVector(txburst->size(), 40);
convert_and_scale(check.begin(), burst_buf, txburst->size() * 2, 1);
estim_burst_params ebp;
auto d = detectAnyBurst(check, 2, 4, 4, CorrType::RACH, 40, &ebp);
if (d)
DBGLG() << "RACH D! " << ebp.toa << std::endl;
else
DBGLG() << "RACH NOOOOOOOOOO D! " << ebp.toa << std::endl;
// memory read --binary --outfile /tmp/mem.bin &burst_buf[0] --count 2500 --force
#endif
submit_burst(burst_buf, txburst->size(), currTime);
delete txburst;
}
#ifdef TXDEBUG
static const char *cmd2str(trxcon::trxcon_phyif_cmd_type c)
{
switch (c) {
case trxcon::TRXCON_PHYIF_CMDT_RESET:
return "TRXCON_PHYIF_CMDT_RESET";
case trxcon::TRXCON_PHYIF_CMDT_POWERON:
return "TRXCON_PHYIF_CMDT_POWERON";
case trxcon::TRXCON_PHYIF_CMDT_POWEROFF:
return "TRXCON_PHYIF_CMDT_POWEROFF";
case trxcon::TRXCON_PHYIF_CMDT_MEASURE:
return "TRXCON_PHYIF_CMDT_MEASURE";
case trxcon::TRXCON_PHYIF_CMDT_SETFREQ_H0:
return "TRXCON_PHYIF_CMDT_SETFREQ_H0";
case trxcon::TRXCON_PHYIF_CMDT_SETFREQ_H1:
return "TRXCON_PHYIF_CMDT_SETFREQ_H1";
case trxcon::TRXCON_PHYIF_CMDT_SETSLOT:
return "TRXCON_PHYIF_CMDT_SETSLOT";
case trxcon::TRXCON_PHYIF_CMDT_SETTA:
return "TRXCON_PHYIF_CMDT_SETTA";
default:
return "UNKNOWN COMMAND!";
}
}
static void print_cmd(trxcon::trxcon_phyif_cmd_type c)
{
DBGLG() << cmd2str(c) << std::endl;
}
#endif
bool upper_trx::driveControl()
{
trxcon::trxcon_phyif_rsp r;
trxcon::trxcon_phyif_cmd cmd;
while (!trxcon::cmdq_to_phy.spsc_pop(&cmd)) {
trxcon::cmdq_to_phy.spsc_prep_pop();
}
if (g_exit_flag)
return false;
#ifdef TXDEBUG
print_cmd(cmd.type);
#endif
switch (cmd.type) {
case trxcon::TRXCON_PHYIF_CMDT_RESET:
set_ta(0);
break;
case trxcon::TRXCON_PHYIF_CMDT_POWERON:
if (!mOn) {
set_upper_ready(true);
mOn = true;
}
break;
case trxcon::TRXCON_PHYIF_CMDT_POWEROFF:
break;
case trxcon::TRXCON_PHYIF_CMDT_MEASURE:
r.type = trxcon::trxcon_phyif_cmd_type::TRXCON_PHYIF_CMDT_MEASURE;
r.param.measure.band_arfcn = cmd.param.measure.band_arfcn;
// FIXME: do we want to measure anything, considering the transceiver just syncs by.. syncing?
r.param.measure.dbm = -80;
tuneRx(trxcon::gsm_arfcn2freq10(cmd.param.measure.band_arfcn, 0) * 1000 * 100);
tuneTx(trxcon::gsm_arfcn2freq10(cmd.param.measure.band_arfcn, 1) * 1000 * 100);
trxcon::cmdq_from_phy.spsc_push(&r);
break;
case trxcon::TRXCON_PHYIF_CMDT_SETFREQ_H0:
tuneRx(trxcon::gsm_arfcn2freq10(cmd.param.setfreq_h0.band_arfcn, 0) * 1000 * 100);
tuneTx(trxcon::gsm_arfcn2freq10(cmd.param.setfreq_h0.band_arfcn, 1) * 1000 * 100);
break;
case trxcon::TRXCON_PHYIF_CMDT_SETFREQ_H1:
break;
case trxcon::TRXCON_PHYIF_CMDT_SETSLOT:
break;
case trxcon::TRXCON_PHYIF_CMDT_SETTA:
set_ta(cmd.param.setta.ta);
break;
}
return false;
}
// trxcon C call(back) if
extern "C" {
int trxcon_phyif_handle_burst_req(void *phyif, const struct trxcon::trxcon_phyif_burst_req *br)
{
if (br->burst_len == 0) // dummy/nope
return 0;
OSMO_ASSERT(br->burst != 0);
trxcon::internal_q_tx_buf b;
b.r = *br;
memcpy(b.buf, (void *)br->burst, br->burst_len);
if (!g_exit_flag)
trxcon::txq.spsc_push(&b);
return 0;
}
int trxcon_phyif_handle_cmd(void *phyif, const struct trxcon::trxcon_phyif_cmd *cmd)
{
#ifdef TXDEBUG
DBGLG() << "TOP C: " << cmd2str(cmd->type) << std::endl;
#endif
if (!g_exit_flag)
trxcon::cmdq_to_phy.spsc_push(cmd);
// q for resp polling happens in main loop
return 0;
}
void trxcon_phyif_close(void *phyif)
{
}
void trxcon_l1ctl_close(struct trxcon::trxcon_inst *trxcon)
{
/* Avoid use-after-free: both *fi and *trxcon are children of
* the L2IF (L1CTL connection), so we need to re-parent *fi
* to NULL before calling l1ctl_client_conn_close(). */
talloc_steal(NULL, trxcon->fi);
trxcon::l1ctl_client_conn_close((struct trxcon::l1ctl_client *)trxcon->l2if);
}
int trxcon_l1ctl_send(struct trxcon::trxcon_inst *trxcon, struct trxcon::msgb *msg)
{
struct trxcon::l1ctl_client *l1c = (struct trxcon::l1ctl_client *)trxcon->l2if;
return trxcon::l1ctl_client_send(l1c, msg);
}
}
void sighandler(int sigset)
{
// we might get a sigpipe in case the l1ctl ud socket disconnects because mobile quits
if (sigset == SIGPIPE) {
g_exit_flag = true;
// we know the flag is atomic and it prevents the trxcon cb handlers from writing
// to the queues, so submit some trash to unblock the threads & exit
trxcon::trxcon_phyif_cmd cmd = {};
trxcon::internal_q_tx_buf b = {};
trxcon::txq.spsc_push(&b);
trxcon::cmdq_to_phy.spsc_push(&cmd);
return;
}
}
int main(int argc, char *argv[])
{
auto tall_trxcon_ctx = talloc_init("trxcon context");
signal(SIGPIPE, sighandler);
trxcon::msgb_talloc_ctx_init(tall_trxcon_ctx, 0);
trxc_log_init(tall_trxcon_ctx);
trxcon::g_trxcon = trxcon::trxcon_inst_alloc(tall_trxcon_ctx, 0, 0);
trxcon::g_trxcon->gsmtap = nullptr;
trxcon::g_trxcon->phyif = nullptr;
trxcon::g_trxcon->phy_quirks.fbsb_extend_fns = 866; // 4 seconds, known to work.
convolve_init();
convert_init();
sigProcLibSetup();
initvita();
int status = 0;
auto trx = new upper_trx();
trx->do_auto_gain = true;
status = trx->init_dev_and_streams();
if (status < 0) {
std::cerr << "Error initializing hardware, quitting.." << std::endl;
return -1;
}
trx->set_name_aff_sched("main", 3, SCHED_FIFO, sched_get_priority_max(SCHED_FIFO) - 5);
if (!trxcon::trxc_l1ctl_init(tall_trxcon_ctx)) {
std::cerr << "Error initializing l1ctl, quitting.." << std::endl;
return -1;
}
trx->start_threads();
trx->stop_threads();
return status;
}