mirror of
https://gitea.osmocom.org/cellular-infrastructure/osmo-trx.git
synced 2025-11-03 05:33:16 +00:00
Setup correlator and detection process similar to the GMSK receiver chain. Require 4 SPS sampling on both Rx and Tx paths as 1 SPS sampling adds too much distoration for 8-PSK recovery. Core receiver operations still run at 1 SPS with the exception of fractional delay filtering, which runs at the higher rate. Perform linear equalization to handle the Gaussian pulse induced ISI. The fixed impulse response used for equalizer tap calculation consists of combined EDGE pulse shape filter and effects of the downsampling filter. Note that the non-adaptive equalizer corrects for modulation induced band limiting and does not account for or compensate for fading channel effects. Signed-off-by: Tom Tsou <tom.tsou@ettus.com>
253 lines
5.7 KiB
C++
253 lines
5.7 KiB
C++
/*
|
|
* Rational Sample Rate Conversion
|
|
* Copyright (C) 2012, 2013 Thomas Tsou <tom@tsou.cc>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <malloc.h>
|
|
#include <iostream>
|
|
|
|
#include "Resampler.h"
|
|
|
|
extern "C" {
|
|
#include "convolve.h"
|
|
}
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846264338327f
|
|
#endif
|
|
|
|
#define MAX_OUTPUT_LEN 4096
|
|
|
|
static float sinc(float x)
|
|
{
|
|
if (x == 0.0)
|
|
return 0.9999999999;
|
|
|
|
return sin(M_PI * x) / (M_PI * x);
|
|
}
|
|
|
|
bool Resampler::initFilters(float bw)
|
|
{
|
|
size_t proto_len = p * filt_len;
|
|
float *proto, val, cutoff;
|
|
float sum = 0.0f, scale = 0.0f;
|
|
float midpt = (float) (proto_len - 1.0) / 2.0;
|
|
|
|
/*
|
|
* Allocate partition filters and the temporary prototype filter
|
|
* according to numerator of the rational rate. Coefficients are
|
|
* real only and must be 16-byte memory aligned for SSE usage.
|
|
*/
|
|
proto = new float[proto_len];
|
|
if (!proto)
|
|
return false;
|
|
|
|
partitions = (float **) malloc(sizeof(float *) * p);
|
|
if (!partitions) {
|
|
free(proto);
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i < p; i++) {
|
|
partitions[i] = (float *)
|
|
memalign(16, filt_len * 2 * sizeof(float));
|
|
}
|
|
|
|
/*
|
|
* Generate the prototype filter with a Blackman-harris window.
|
|
* Scale coefficients with DC filter gain set to unity divided
|
|
* by the number of filter partitions.
|
|
*/
|
|
float a0 = 0.35875;
|
|
float a1 = 0.48829;
|
|
float a2 = 0.14128;
|
|
float a3 = 0.01168;
|
|
|
|
if (p > q)
|
|
cutoff = (float) p;
|
|
else
|
|
cutoff = (float) q;
|
|
|
|
for (size_t i = 0; i < proto_len; i++) {
|
|
proto[i] = sinc(((float) i - midpt) / cutoff * bw);
|
|
proto[i] *= a0 -
|
|
a1 * cos(2 * M_PI * i / (proto_len - 1)) +
|
|
a2 * cos(4 * M_PI * i / (proto_len - 1)) -
|
|
a3 * cos(6 * M_PI * i / (proto_len - 1));
|
|
sum += proto[i];
|
|
}
|
|
scale = p / sum;
|
|
|
|
/* Populate filter partitions from the prototype filter */
|
|
for (size_t i = 0; i < filt_len; i++) {
|
|
for (size_t n = 0; n < p; n++) {
|
|
partitions[n][2 * i + 0] = proto[i * p + n] * scale;
|
|
partitions[n][2 * i + 1] = 0.0f;
|
|
}
|
|
}
|
|
|
|
/* For convolution, we store the filter taps in reverse */
|
|
for (size_t n = 0; n < p; n++) {
|
|
for (size_t i = 0; i < filt_len / 2; i++) {
|
|
val = partitions[n][2 * i];
|
|
partitions[n][2 * i] = partitions[n][2 * (filt_len - 1 - i)];
|
|
partitions[n][2 * (filt_len - 1 - i)] = val;
|
|
}
|
|
}
|
|
|
|
delete proto;
|
|
|
|
return true;
|
|
}
|
|
|
|
void Resampler::releaseFilters()
|
|
{
|
|
if (partitions) {
|
|
for (size_t i = 0; i < p; i++)
|
|
free(partitions[i]);
|
|
}
|
|
|
|
free(partitions);
|
|
partitions = NULL;
|
|
}
|
|
|
|
static bool check_vec_len(int in_len, int out_len, int p, int q)
|
|
{
|
|
if (in_len % q) {
|
|
std::cerr << "Invalid input length " << in_len
|
|
<< " is not multiple of " << q << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (out_len % p) {
|
|
std::cerr << "Invalid output length " << out_len
|
|
<< " is not multiple of " << p << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if ((in_len / q) != (out_len / p)) {
|
|
std::cerr << "Input/output block length mismatch" << std::endl;
|
|
std::cerr << "P = " << p << ", Q = " << q << std::endl;
|
|
std::cerr << "Input len: " << in_len << std::endl;
|
|
std::cerr << "Output len: " << out_len << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (out_len > MAX_OUTPUT_LEN) {
|
|
std::cerr << "Block length of " << out_len
|
|
<< " exceeds max of " << MAX_OUTPUT_LEN << std::endl;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Resampler::computePath()
|
|
{
|
|
for (int i = 0; i < MAX_OUTPUT_LEN; i++) {
|
|
in_index[i] = (q * i) / p;
|
|
out_path[i] = (q * i) % p;
|
|
}
|
|
}
|
|
|
|
int Resampler::rotate(float *in, size_t in_len, float *out, size_t out_len)
|
|
{
|
|
int n, path;
|
|
int hist_len = filt_len - 1;
|
|
|
|
if (!check_vec_len(in_len, out_len, p, q))
|
|
return -1;
|
|
|
|
if (history_on) {
|
|
memcpy(&in[-2 * hist_len],
|
|
history, hist_len * 2 * sizeof(float));
|
|
} else {
|
|
memset(&in[-2 * hist_len], 0,
|
|
hist_len * 2 * sizeof(float));
|
|
}
|
|
|
|
/* Generate output from precomputed input/output paths */
|
|
for (size_t i = 0; i < out_len; i++) {
|
|
n = in_index[i];
|
|
path = out_path[i];
|
|
|
|
convolve_real(in, in_len,
|
|
partitions[path], filt_len,
|
|
&out[2 * i], out_len - i,
|
|
n, 1, 1, 0);
|
|
}
|
|
|
|
/* Save history */
|
|
if (history_on) {
|
|
memcpy(history, &in[2 * (in_len - hist_len)],
|
|
hist_len * 2 * sizeof(float));
|
|
}
|
|
|
|
return out_len;
|
|
}
|
|
|
|
bool Resampler::init(float bw)
|
|
{
|
|
size_t hist_len = filt_len - 1;
|
|
|
|
/* Filterbank filter internals */
|
|
if (initFilters(bw) < 0)
|
|
return false;
|
|
|
|
/* History buffer */
|
|
history = new float[2 * hist_len];
|
|
memset(history, 0, 2 * hist_len * sizeof(float));
|
|
|
|
/* Precompute filterbank paths */
|
|
in_index = new size_t[MAX_OUTPUT_LEN];
|
|
out_path = new size_t[MAX_OUTPUT_LEN];
|
|
computePath();
|
|
|
|
return true;
|
|
}
|
|
|
|
size_t Resampler::len()
|
|
{
|
|
return filt_len;
|
|
}
|
|
|
|
void Resampler::enableHistory(bool on)
|
|
{
|
|
history_on = on;
|
|
}
|
|
|
|
Resampler::Resampler(size_t p, size_t q, size_t filt_len)
|
|
: in_index(NULL), out_path(NULL), partitions(NULL),
|
|
history(NULL), history_on(true)
|
|
{
|
|
this->p = p;
|
|
this->q = q;
|
|
this->filt_len = filt_len;
|
|
}
|
|
|
|
Resampler::~Resampler()
|
|
{
|
|
releaseFilters();
|
|
|
|
delete history;
|
|
delete in_index;
|
|
delete out_path;
|
|
}
|