mirror of
https://gitea.osmocom.org/cellular-infrastructure/osmo-trx.git
synced 2025-10-23 08:22:00 +00:00
Remove the paragraph about writing to the Free Software Foundation's mailing address. The FSF has changed addresses in the past, and may do so again. In 2021 this is not useful, let's rather have a bit less boilerplate at the start of source files. Change-Id: I8ba71ab9ccde4ba25151ecbeb2a323f706b57d43
188 lines
4.4 KiB
C++
188 lines
4.4 KiB
C++
/*
|
|
* Rational Sample Rate Conversion
|
|
* Copyright (C) 2012, 2013 Thomas Tsou <tom@tsou.cc>
|
|
*
|
|
* SPDX-License-Identifier: LGPL-2.1+
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <malloc.h>
|
|
#include <iostream>
|
|
#include <algorithm>
|
|
|
|
#include "Resampler.h"
|
|
|
|
extern "C" {
|
|
#include "convolve.h"
|
|
}
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846264338327f
|
|
#endif
|
|
|
|
#define MAX_OUTPUT_LEN 4096
|
|
|
|
using namespace std;
|
|
|
|
static float sinc(float x)
|
|
{
|
|
if (x == 0.0)
|
|
return 0.9999999999;
|
|
|
|
return sin(M_PI * x) / (M_PI * x);
|
|
}
|
|
|
|
void Resampler::initFilters(float bw)
|
|
{
|
|
float cutoff;
|
|
float sum = 0.0f, scale = 0.0f;
|
|
|
|
/*
|
|
* Allocate partition filters and the temporary prototype filter
|
|
* according to numerator of the rational rate. Coefficients are
|
|
* real only and must be 16-byte memory aligned for SSE usage.
|
|
*/
|
|
auto proto = vector<float>(p * filt_len);
|
|
for (auto &part : partitions)
|
|
part = (complex<float> *) memalign(16, filt_len * sizeof(complex<float>));
|
|
|
|
/*
|
|
* Generate the prototype filter with a Blackman-harris window.
|
|
* Scale coefficients with DC filter gain set to unity divided
|
|
* by the number of filter partitions.
|
|
*/
|
|
float a0 = 0.35875;
|
|
float a1 = 0.48829;
|
|
float a2 = 0.14128;
|
|
float a3 = 0.01168;
|
|
|
|
if (p > q)
|
|
cutoff = (float) p;
|
|
else
|
|
cutoff = (float) q;
|
|
|
|
float midpt = (proto.size() - 1) / 2.0;
|
|
for (size_t i = 0; i < proto.size(); i++) {
|
|
proto[i] = sinc(((float) i - midpt) / cutoff * bw);
|
|
proto[i] *= a0 -
|
|
a1 * cos(2 * M_PI * i / (proto.size() - 1)) +
|
|
a2 * cos(4 * M_PI * i / (proto.size() - 1)) -
|
|
a3 * cos(6 * M_PI * i / (proto.size() - 1));
|
|
sum += proto[i];
|
|
}
|
|
scale = p / sum;
|
|
|
|
/* Populate filter partitions from the prototype filter */
|
|
for (size_t i = 0; i < filt_len; i++) {
|
|
for (size_t n = 0; n < p; n++)
|
|
partitions[n][i] = complex<float>(proto[i * p + n] * scale);
|
|
}
|
|
|
|
/* Store filter taps in reverse */
|
|
for (auto &part : partitions)
|
|
reverse(&part[0], &part[filt_len]);
|
|
}
|
|
|
|
#ifndef __OPTIMIZE__
|
|
static bool check_vec_len(int in_len, int out_len, int p, int q)
|
|
{
|
|
if (in_len % q) {
|
|
std::cerr << "Invalid input length " << in_len
|
|
<< " is not multiple of " << q << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (out_len % p) {
|
|
std::cerr << "Invalid output length " << out_len
|
|
<< " is not multiple of " << p << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if ((in_len / q) != (out_len / p)) {
|
|
std::cerr << "Input/output block length mismatch" << std::endl;
|
|
std::cerr << "P = " << p << ", Q = " << q << std::endl;
|
|
std::cerr << "Input len: " << in_len << std::endl;
|
|
std::cerr << "Output len: " << out_len << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (out_len > MAX_OUTPUT_LEN) {
|
|
std::cerr << "Block length of " << out_len
|
|
<< " exceeds max of " << MAX_OUTPUT_LEN << std::endl;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
int Resampler::rotate(const float *in, size_t in_len, float *out, size_t out_len)
|
|
{
|
|
int n, path;
|
|
#ifndef __OPTIMIZE__
|
|
if (!check_vec_len(in_len, out_len, p, q))
|
|
return -1;
|
|
#endif
|
|
/* Generate output from precomputed input/output paths */
|
|
for (size_t i = 0; i < out_len; i++) {
|
|
n = in_index[i];
|
|
path = out_path[i];
|
|
|
|
convolve_real(in, in_len,
|
|
reinterpret_cast<float *>(partitions[path]),
|
|
filt_len, &out[2 * i], out_len - i,
|
|
n, 1);
|
|
}
|
|
|
|
return out_len;
|
|
}
|
|
|
|
bool Resampler::init(float bw)
|
|
{
|
|
if (p == 0 || q == 0 || filt_len == 0) return false;
|
|
|
|
/* Filterbank filter internals */
|
|
initFilters(bw);
|
|
|
|
/* Precompute filterbank paths */
|
|
int i = 0;
|
|
for (auto &index : in_index)
|
|
index = (q * i++) / p;
|
|
i = 0;
|
|
for (auto &path : out_path)
|
|
path = (q * i++) % p;
|
|
|
|
return true;
|
|
}
|
|
|
|
size_t Resampler::len()
|
|
{
|
|
return filt_len;
|
|
}
|
|
|
|
Resampler::Resampler(size_t p, size_t q, size_t filt_len)
|
|
: in_index(MAX_OUTPUT_LEN), out_path(MAX_OUTPUT_LEN), partitions(p)
|
|
{
|
|
this->p = p;
|
|
this->q = q;
|
|
this->filt_len = filt_len;
|
|
}
|
|
|
|
Resampler::~Resampler()
|
|
{
|
|
for (auto &part : partitions)
|
|
free(part);
|
|
}
|