Files
osmo-trx/Transceiver52M/radioInterfaceMulti.cpp
Pau Espin Pedrol 992c9bd1ce radioInterface: Operate on real Tx power attenuation rather than on device specific gains
All the Tx gain related APIs are left out of reach from radioInterface,
and in there we simply interact with radioDevice passing the attenuation
received from TRXC.

Prior gain logic is moved in base radiodevice class, with the idea that
the setTxGain() and related functions will be dropped over time in each
sublcass in favour of an specific implementation of the
SetPowerAttenuation API.

Change-Id: I4f8a1bcbed74aa9310306b97b0b1bfb02f7855e6
2020-06-09 11:43:32 +02:00

445 lines
10 KiB
C++

/*
* Multi-carrier radio interface
*
* Copyright (C) 2016 Ettus Research LLC
*
* Author: Tom Tsou <tom.tsou@ettus.com>
*
* SPDX-License-Identifier: AGPL-3.0+
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* See the COPYING file in the main directory for details.
*/
#include <radioInterface.h>
#include <Logger.h>
#include "Resampler.h"
extern "C" {
#include "convert.h"
}
/* Resampling parameters for 64 MHz clocking */
#define RESAMP_INRATE 65
#define RESAMP_OUTRATE (96 / 2)
/* Universal resampling parameters */
#define NUMCHUNKS 24
#define MCHANS 4
RadioInterfaceMulti::RadioInterfaceMulti(RadioDevice *radio, size_t tx_sps,
size_t rx_sps, size_t chans)
: RadioInterface(radio, tx_sps, rx_sps, chans),
outerSendBuffer(NULL), outerRecvBuffer(NULL),
dnsampler(NULL), upsampler(NULL), channelizer(NULL), synthesis(NULL)
{
}
RadioInterfaceMulti::~RadioInterfaceMulti()
{
close();
}
void RadioInterfaceMulti::close()
{
delete outerSendBuffer;
delete outerRecvBuffer;
delete dnsampler;
delete upsampler;
delete channelizer;
delete synthesis;
outerSendBuffer = NULL;
outerRecvBuffer = NULL;
dnsampler = NULL;
upsampler = NULL;
channelizer = NULL;
synthesis = NULL;
mReceiveFIFO.resize(0);
powerScaling.resize(0);
history.resize(0);
active.resize(0);
rx_freq_state.resize(0);
tx_freq_state.resize(0);
RadioInterface::close();
}
static int getLogicalChan(size_t pchan, size_t chans)
{
switch (chans) {
case 1:
if (pchan == 0)
return 0;
else
return -1;
break;
case 2:
if (pchan == 0)
return 0;
if (pchan == 3)
return 1;
else
return -1;
break;
case 3:
if (pchan == 1)
return 0;
if (pchan == 0)
return 1;
if (pchan == 3)
return 2;
else
return -1;
break;
default:
break;
};
return -1;
}
static int getFreqShift(size_t chans)
{
switch (chans) {
case 1:
return 0;
case 2:
return 0;
case 3:
return 1;
default:
break;
};
return -1;
}
/* Initialize I/O specific objects */
bool RadioInterfaceMulti::init(int type)
{
float cutoff = 1.0f;
size_t inchunk = 0, outchunk = 0;
if (mChans > MCHANS - 1) {
LOG(ALERT) << "Invalid channel configuration " << mChans;
return false;
}
close();
sendBuffer.resize(mChans);
recvBuffer.resize(mChans);
convertSendBuffer.resize(1);
convertRecvBuffer.resize(1);
mReceiveFIFO.resize(mChans);
powerScaling.resize(mChans);
history.resize(mChans);
rx_freq_state.resize(mChans);
tx_freq_state.resize(mChans);
active.resize(MCHANS, false);
inchunk = RESAMP_INRATE * 4;
outchunk = RESAMP_OUTRATE * 4;
if (inchunk * NUMCHUNKS < 625 * 2) {
LOG(ALERT) << "Invalid inner chunk size " << inchunk;
return false;
}
dnsampler = new Resampler(RESAMP_INRATE, RESAMP_OUTRATE);
if (!dnsampler->init(1.0)) {
LOG(ALERT) << "Rx resampler failed to initialize";
return false;
}
upsampler = new Resampler(RESAMP_OUTRATE, RESAMP_INRATE);
if (!upsampler->init(cutoff)) {
LOG(ALERT) << "Tx resampler failed to initialize";
return false;
}
channelizer = new Channelizer(MCHANS, outchunk);
if (!channelizer->init()) {
LOG(ALERT) << "Rx channelizer failed to initialize";
return false;
}
synthesis = new Synthesis(MCHANS, outchunk);
if (!synthesis->init()) {
LOG(ALERT) << "Tx synthesis filter failed to initialize";
return false;
}
/*
* Allocate high and low rate buffers. The high rate receive
* buffer and low rate transmit vectors feed into the resampler
* and requires headroom equivalent to the filter length. Low
* rate buffers are allocated in the main radio interface code.
*/
for (size_t i = 0; i < mChans; i++) {
sendBuffer[i] = new RadioBuffer(NUMCHUNKS, inchunk,
upsampler->len(), true);
recvBuffer[i] = new RadioBuffer(NUMCHUNKS, inchunk,
0, false);
history[i] = new signalVector(dnsampler->len());
synthesis->resetBuffer(i);
}
outerSendBuffer = new signalVector(synthesis->outputLen());
outerRecvBuffer = new signalVector(channelizer->inputLen());
convertSendBuffer[0] = new short[2 * synthesis->outputLen()];
convertRecvBuffer[0] = new short[2 * channelizer->inputLen()];
/* Configure channels */
switch (mChans) {
case 1:
active[0] = true;
break;
case 2:
active[0] = true;
active[3] = true;
break;
case 3:
active[0] = true;
active[1] = true;
active[3] = true;
break;
default:
LOG(ALERT) << "Unsupported channel combination";
return false;
}
return true;
}
/* Receive a timestamped chunk from the device */
int RadioInterfaceMulti::pullBuffer()
{
bool local_underrun;
size_t num;
float *buf;
unsigned int i;
if (recvBuffer[0]->getFreeSegments() <= 0)
return -1;
/* Outer buffer access size is fixed */
num = mDevice->readSamples(convertRecvBuffer,
outerRecvBuffer->size(),
&overrun,
readTimestamp,
&local_underrun);
if (num != channelizer->inputLen()) {
LOG(ALERT) << "Receive error " << num << ", " << channelizer->inputLen();
return -1;
}
convert_short_float((float *) outerRecvBuffer->begin(),
convertRecvBuffer[0], 2 * outerRecvBuffer->size());
osmo_trx_sync_or_and_fetch(&underrun, local_underrun);
readTimestamp += num;
channelizer->rotate((float *) outerRecvBuffer->begin(),
outerRecvBuffer->size());
for (size_t pchan = 0; pchan < MCHANS; pchan++) {
if (!active[pchan])
continue;
int lchan = getLogicalChan(pchan, mChans);
if (lchan < 0) {
LOG(ALERT) << "Invalid logical channel " << pchan;
continue;
}
/*
* Update history by writing into the head portion of the
* channelizer output buffer. For this to work, filter length of
* the polyphase channelizer partition filter should be equal to
* or larger than the resampling filter.
*/
buf = channelizer->outputBuffer(pchan);
size_t cLen = channelizer->outputLen();
size_t hLen = dnsampler->len();
float *fdst = &buf[2 * -hLen];
complex *src = history[lchan]->begin();
for (i = 0; i < hLen; i++) {
fdst[0] = src->real();
fdst[1] = src->imag();
src++;
fdst += 2;
}
complex *dst = history[lchan]->begin();
float *fsrc = &buf[2 * (cLen - hLen)];
for (i = 0; i < hLen; i++) {
*dst = complex(fsrc[0], fsrc[1]);
fsrc += 2;
dst++;
}
float *wr_segment = recvBuffer[lchan]->getWriteSegment();
/* Write to the end of the inner receive buffer */
if (!dnsampler->rotate(channelizer->outputBuffer(pchan),
channelizer->outputLen(),
wr_segment,
recvBuffer[lchan]->getSegmentLen())) {
LOG(ALERT) << "Sample rate upsampling error";
}
}
return 0;
}
/* Send a timestamped chunk to the device */
bool RadioInterfaceMulti::pushBuffer()
{
bool local_underrun;
if (sendBuffer[0]->getAvailSegments() <= 0)
return false;
for (size_t pchan = 0; pchan < MCHANS; pchan++) {
if (!active[pchan]) {
synthesis->resetBuffer(pchan);
continue;
}
int lchan = getLogicalChan(pchan, mChans);
if (lchan < 0) {
LOG(ALERT) << "Invalid logical channel " << pchan;
continue;
}
if (!upsampler->rotate(sendBuffer[lchan]->getReadSegment(),
sendBuffer[lchan]->getSegmentLen(),
synthesis->inputBuffer(pchan),
synthesis->inputLen())) {
LOG(ALERT) << "Sample rate downsampling error";
}
}
synthesis->rotate((float *) outerSendBuffer->begin(),
outerSendBuffer->size());
convert_float_short(convertSendBuffer[0],
(float *) outerSendBuffer->begin(),
1.0 / (float) mChans, 2 * outerSendBuffer->size());
size_t num = mDevice->writeSamples(convertSendBuffer,
outerSendBuffer->size(),
&local_underrun,
writeTimestamp);
if (num != outerSendBuffer->size()) {
LOG(ALERT) << "Transmit error " << num;
}
osmo_trx_sync_or_and_fetch(&underrun, local_underrun);
writeTimestamp += num;
return true;
}
/* Frequency comparison limit */
#define FREQ_DELTA_LIMIT 10.0
static bool fltcmp(double a, double b)
{
return fabs(a - b) < FREQ_DELTA_LIMIT ? true : false;
}
bool RadioInterfaceMulti::verify_arfcn_consistency(double freq, size_t chan, bool tx)
{
double freq_i;
std::string str_dir = tx ? "Tx" : "Rx";
std::vector<struct freq_cfg_state> &v = tx ? tx_freq_state : rx_freq_state;
for (size_t i = 0; i < mChans; i++) {
if (i == chan)
continue;
if (!v[i].set)
continue;
freq_i = v[i].freq_hz + (double) ((int)chan - (int)i) * MCBTS_SPACING;
if (!fltcmp(freq, freq_i)) {
LOGCHAN(chan, DMAIN, ERROR)
<< "Setting " << str_dir << " frequency " << freq
<< " is incompatible: already configured channel "
<< i << " uses frequency " << v[i].freq_hz
<< " (expected " << freq_i << ")";
return false;
}
}
v[chan].set = true;
v[chan].freq_hz = freq;
return true;
}
bool RadioInterfaceMulti::tuneTx(double freq, size_t chan)
{
double shift;
if (chan >= mChans)
return false;
if (!verify_arfcn_consistency(freq, chan, true))
return false;
if (chan == 0) {
shift = (double) getFreqShift(mChans);
return mDevice->setTxFreq(freq + shift * MCBTS_SPACING);
}
return true;
}
bool RadioInterfaceMulti::tuneRx(double freq, size_t chan)
{
double shift;
if (chan >= mChans)
return false;
if (!verify_arfcn_consistency(freq, chan, false))
return false;
if (chan == 0) {
shift = (double) getFreqShift(mChans);
return mDevice->setRxFreq(freq + shift * MCBTS_SPACING);
}
return true;
}
double RadioInterfaceMulti::setRxGain(double db, size_t chan)
{
if (chan == 0)
return mDevice->setRxGain(db);
else
return mDevice->getRxGain();
}
int RadioInterfaceMulti::setPowerAttenuation(int atten, size_t chan)
{
return RadioInterface::setPowerAttenuation(atten, 0);
}