mirror of
https://gitea.osmocom.org/cellular-infrastructure/osmo-trx.git
synced 2025-11-02 05:03:18 +00:00
Similar to the existing Intel SSE cases, add support for NEON vector floating point SIMD processing. In this case, use ARM assembly directly as the NEON intrinsics do not generate preferential code output. Currently support NEON vectorized convolution and floating point integer conversions. Signed-off-by: Thomas Tsou <tom@tsou.cc>
140 lines
3.5 KiB
C
140 lines
3.5 KiB
C
/*
|
|
* NEON Convolution
|
|
* Copyright (C) 2012, 2013 Thomas Tsou <tom@tsou.cc>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <malloc.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
/* Forward declarations from base implementation */
|
|
int _base_convolve_real(float *x, int x_len,
|
|
float *h, int h_len,
|
|
float *y, int y_len,
|
|
int start, int len,
|
|
int step, int offset);
|
|
|
|
int _base_convolve_complex(float *x, int x_len,
|
|
float *h, int h_len,
|
|
float *y, int y_len,
|
|
int start, int len,
|
|
int step, int offset);
|
|
|
|
int bounds_check(int x_len, int h_len, int y_len,
|
|
int start, int len, int step);
|
|
|
|
#ifdef HAVE_NEON
|
|
/* Calls into NEON assembler */
|
|
void neon_conv_real4(float *x, float *h, float *y, int len);
|
|
void neon_conv_real8(float *x, float *h, float *y, int len);
|
|
void neon_conv_real12(float *x, float *h, float *y, int len);
|
|
void neon_conv_real16(float *x, float *h, float *y, int len);
|
|
void neon_conv_real20(float *x, float *h, float *y, int len);
|
|
void mac_cx_neon4(float *x, float *h, float *y, int len);
|
|
|
|
/* Complex-complex convolution */
|
|
static void neon_conv_cmplx_4n(float *x, float *h, float *y, int h_len, int len)
|
|
{
|
|
for (int i = 0; i < len; i++)
|
|
mac_cx_neon4(&x[2 * i], h, &y[2 * i], h_len >> 2);
|
|
}
|
|
#endif
|
|
|
|
/* API: Aligned complex-real */
|
|
int convolve_real(float *x, int x_len,
|
|
float *h, int h_len,
|
|
float *y, int y_len,
|
|
int start, int len,
|
|
int step, int offset)
|
|
{
|
|
void (*conv_func)(float *, float *, float *, int) = NULL;
|
|
|
|
if (bounds_check(x_len, h_len, y_len, start, len, step) < 0)
|
|
return -1;
|
|
|
|
memset(y, 0, len * 2 * sizeof(float));
|
|
|
|
#ifdef HAVE_NEON
|
|
if (step <= 4) {
|
|
switch (h_len) {
|
|
case 4:
|
|
conv_func = neon_conv_real4;
|
|
break;
|
|
case 8:
|
|
conv_func = neon_conv_real8;
|
|
break;
|
|
case 12:
|
|
conv_func = neon_conv_real12;
|
|
break;
|
|
case 16:
|
|
conv_func = neon_conv_real16;
|
|
break;
|
|
case 20:
|
|
conv_func = neon_conv_real20;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
if (conv_func) {
|
|
conv_func(&x[2 * (-(h_len - 1) + start)],
|
|
h, y, len);
|
|
} else {
|
|
_base_convolve_real(x, x_len,
|
|
h, h_len,
|
|
y, y_len,
|
|
start, len, step, offset);
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
|
|
/* API: Aligned complex-complex */
|
|
int convolve_complex(float *x, int x_len,
|
|
float *h, int h_len,
|
|
float *y, int y_len,
|
|
int start, int len,
|
|
int step, int offset)
|
|
{
|
|
void (*conv_func)(float *, float *, float *, int, int) = NULL;
|
|
|
|
if (bounds_check(x_len, h_len, y_len, start, len, step) < 0)
|
|
return -1;
|
|
|
|
memset(y, 0, len * 2 * sizeof(float));
|
|
|
|
#ifdef HAVE_NEON
|
|
if (step <= 4 && !(h_len % 4))
|
|
conv_func = neon_conv_cmplx_4n;
|
|
#endif
|
|
if (conv_func) {
|
|
conv_func(&x[2 * (-(h_len - 1) + start)],
|
|
h, y, h_len, len);
|
|
} else {
|
|
_base_convolve_complex(x, x_len,
|
|
h, h_len,
|
|
y, y_len,
|
|
start, len, step, offset);
|
|
}
|
|
|
|
return len;
|
|
}
|