python: Reformat with Black, except quotes.

Signed-off-by: Anders Kaseorg <anders@zulip.com>
This commit is contained in:
Anders Kaseorg
2021-02-11 23:19:30 -08:00
committed by Tim Abbott
parent 5028c081cb
commit 11741543da
817 changed files with 44952 additions and 24860 deletions

View File

@@ -11,7 +11,8 @@ from django.conf import settings
T = TypeVar('T')
def statsd_key(val: str, clean_periods: bool=False) -> str:
def statsd_key(val: str, clean_periods: bool = False) -> str:
if ':' in val:
val = val.split(':')[0]
val = val.replace('-', "_")
@@ -20,6 +21,7 @@ def statsd_key(val: str, clean_periods: bool=False) -> str:
return val
class StatsDWrapper:
"""Transparently either submit metrics to statsd
or do nothing without erroring out"""
@@ -27,9 +29,10 @@ class StatsDWrapper:
# Backported support for gauge deltas
# as our statsd server supports them but supporting
# pystatsd is not released yet
def _our_gauge(self, stat: str, value: float, rate: float=1, delta: bool=False) -> None:
def _our_gauge(self, stat: str, value: float, rate: float = 1, delta: bool = False) -> None:
"""Set a gauge value."""
from django_statsd.clients import statsd
if delta:
value_str = f'{value:+g}|g'
else:
@@ -42,6 +45,7 @@ class StatsDWrapper:
if name in ['timer', 'timing', 'incr', 'decr', 'gauge']:
if settings.STATSD_HOST != '':
from django_statsd.clients import statsd
if name == 'gauge':
return self._our_gauge
else:
@@ -51,21 +55,24 @@ class StatsDWrapper:
raise AttributeError
statsd = StatsDWrapper()
# Runs the callback with slices of all_list of a given batch_size
def run_in_batches(all_list: Sequence[T],
batch_size: int,
callback: Callable[[Sequence[T]], None],
sleep_time: int=0,
logger: Optional[Callable[[str], None]]=None) -> None:
def run_in_batches(
all_list: Sequence[T],
batch_size: int,
callback: Callable[[Sequence[T]], None],
sleep_time: int = 0,
logger: Optional[Callable[[str], None]] = None,
) -> None:
if len(all_list) == 0:
return
limit = (len(all_list) // batch_size) + 1
for i in range(limit):
start = i*batch_size
end = (i+1) * batch_size
start = i * batch_size
end = (i + 1) * batch_size
if end >= len(all_list):
end = len(all_list)
batch = all_list[start:end]
@@ -78,8 +85,8 @@ def run_in_batches(all_list: Sequence[T],
if i != limit - 1:
sleep(sleep_time)
def make_safe_digest(string: str,
hash_func: Callable[[bytes], Any]=hashlib.sha1) -> str:
def make_safe_digest(string: str, hash_func: Callable[[bytes], Any] = hashlib.sha1) -> str:
"""
return a hex digest of `string`.
"""
@@ -102,6 +109,7 @@ def log_statsd_event(name: str) -> None:
event_name = f"events.{name}"
statsd.incr(event_name)
def generate_api_key() -> str:
api_key = ""
while len(api_key) < 32:
@@ -109,14 +117,18 @@ def generate_api_key() -> str:
api_key += secrets.token_urlsafe(3 * 9).replace("_", "").replace("-", "")
return api_key[:32]
def has_api_key_format(key: str) -> bool:
return bool(re.fullmatch(r"([A-Za-z0-9]){32}", key))
def query_chunker(queries: List[Any],
id_collector: Optional[Set[int]]=None,
chunk_size: int=1000,
db_chunk_size: Optional[int]=None) -> Iterator[Any]:
'''
def query_chunker(
queries: List[Any],
id_collector: Optional[Set[int]] = None,
chunk_size: int = 1000,
db_chunk_size: Optional[int] = None,
) -> Iterator[Any]:
"""
This merges one or more Django ascending-id queries into
a generator that returns chunks of chunk_size row objects
during each yield, preserving id order across all results..
@@ -130,7 +142,7 @@ def query_chunker(queries: List[Any],
internally to enforce unique ids, but which the caller
can pass in to us if they want the side effect of collecting
all ids.
'''
"""
if db_chunk_size is None:
db_chunk_size = chunk_size // len(queries)
@@ -138,7 +150,7 @@ def query_chunker(queries: List[Any],
assert chunk_size >= 2
if id_collector is not None:
assert(len(id_collector) == 0)
assert len(id_collector) == 0
else:
id_collector = set()
@@ -169,18 +181,20 @@ def query_chunker(queries: List[Any],
yield [row for row_id, i, row in tup_chunk]
def process_list_in_batches(lst: List[Any],
chunk_size: int,
process_batch: Callable[[List[Any]], None]) -> None:
def process_list_in_batches(
lst: List[Any], chunk_size: int, process_batch: Callable[[List[Any]], None]
) -> None:
offset = 0
while True:
items = lst[offset:offset+chunk_size]
items = lst[offset : offset + chunk_size]
if not items:
break
process_batch(items)
offset += chunk_size
def split_by(array: List[Any], group_size: int, filler: Any) -> List[List[Any]]:
"""
Group elements into list of size `group_size` and fill empty cells with