Add roadmap feature to js-dep-visualizer.

The js-dep-visualizer tool now attempts to find a set of edges
to remove from a call graph that would reduce it to having only
trivial mutual dependencies, and it produces a roadmap of the
changes that need to happen.

If the tool can't reduce the graph all the way, it still produces
a DOT file that can be visualized.

This fix also has some significant code cleanup.
This commit is contained in:
Steve Howell
2017-03-20 05:25:45 -07:00
parent c87c67c33f
commit 36b29a966e
2 changed files with 292 additions and 120 deletions

View File

@@ -3,11 +3,14 @@ from __future__ import print_function
from collections import defaultdict
from typing import DefaultDict, List, Set, Tuple
from typing import Callable, DefaultDict, Iterator, List, Set, Tuple
Edge = Tuple[str, str]
EdgeSet = Set[Edge]
class Graph(object):
def __init__(self, *tuples):
# type: (Tuple[str, str]) -> None
def __init__(self, tuples):
# type: (EdgeSet) -> None
self.children = defaultdict(list) # type: DefaultDict[str, List[str]]
self.parents = defaultdict(list) # type: DefaultDict[str, List[str]]
self.nodes = set() # type: Set[str]
@@ -18,6 +21,28 @@ class Graph(object):
self.nodes.add(parent)
self.nodes.add(child)
def copy(self):
# type: () -> Graph
return Graph(self.edges())
def num_edges(self):
# type: () -> int
return len(self.edges())
def minus_edge(self, edge):
# type: (Edge) -> Graph
edges = self.edges().copy()
edges.remove(edge)
return Graph(edges)
def edges(self):
# type: () -> EdgeSet
s = set()
for parent in self.nodes:
for child in self.children[parent]:
s.add((parent, child))
return s
def remove_exterior_nodes(self):
# type: () -> None
still_work_to_do = True
@@ -61,6 +86,30 @@ class Graph(object):
for tup in tups:
print(tup)
def best_edge_to_remove(orig_graph, is_exempt):
# type: (Graph, Callable[[Edge], bool]) -> Edge
# expects an already reduced graph as input
orig_edges = orig_graph.edges()
def get_choices():
# type: () -> Iterator[Tuple[int, Edge]]
for edge in orig_edges:
if is_exempt(edge):
continue
graph = orig_graph.minus_edge(edge)
graph.remove_exterior_nodes()
size = graph.num_edges()
yield (size, edge)
choices = list(get_choices())
if not choices:
return None
min_size, best_edge = min(choices)
if min_size >= orig_graph.num_edges():
raise Exception('no edges work here')
return best_edge
def make_dot_file(graph):
# type: (Graph) -> str
buffer = 'digraph G {\n'
@@ -73,7 +122,7 @@ def make_dot_file(graph):
def test():
# type: () -> None
graph = Graph(
graph = Graph(set([
('x', 'a'),
('a', 'b'),
('b', 'c'),
@@ -82,7 +131,7 @@ def test():
('d', 'e'),
('e', 'f'),
('e', 'g'),
)
]))
graph.remove_exterior_nodes()
s = make_dot_file(graph)