from __future__ import division, absolute_import from zerver.models import Realm, UserProfile, Stream, Message from analytics.models import InstallationCount, RealmCount, UserCount, StreamCount from analytics.lib.counts import CountStat from analytics.lib.time_utils import time_range from datetime import datetime from math import sqrt from random import gauss, random, seed from six.moves import range, zip def generate_time_series_data(length, business_hours_base, non_business_hours_base, growth=1, autocorrelation=0, spikiness=1, holiday_rate=0, frequency=CountStat.HOUR, is_gauge=False): # type: (int, float, float, float, float, float, float, str, bool) -> List[int] """ Generate semi-realistic looking time series data for testing analytics graphs. length -- Number of data points returned. business_hours_base -- Average value during a business hour (or day) at beginning of time series, if frequency is CountStat.HOUR (CountStat.DAY, respectively). non_business_hours_base -- The above, for non-business hours/days. growth -- Ratio between average values at end of time series and beginning of time series. autocorrelation -- Makes neighboring data points look more like each other. At 0 each point is unaffected by the previous point, and at 1 each point is a deterministic function of the previous point. spikiness -- 0 means no randomness (other than holiday_rate), higher values increase the variance. holiday_rate -- Fraction of points randomly set to 0. frequency -- Should be CountStat.HOUR or CountStat.DAY. is_gauge -- If True, return partial sum of the series. """ if length < 2: raise ValueError("length must be at least 2") if frequency == CountStat.HOUR: seasonality = [non_business_hours_base] * 24 * 7 for day in range(5): for hour in range(8): seasonality[24*day + hour] = business_hours_base elif frequency == CountStat.DAY: seasonality = [business_hours_base]*5 + [non_business_hours_base]*2 else: raise ValueError("Unknown frequency: %s" % (frequency,)) growth_base = growth ** (1. / (length-1)) values_no_noise = [seasonality[i % len(seasonality)] * (growth_base**i) for i in range(length)] seed(26) noise_scalars = [gauss(0, 1)] for i in range(1, length): noise_scalars.append(noise_scalars[-1]*autocorrelation + gauss(0, 1)*(1-autocorrelation)) values = [0 if random() < holiday_rate else int(v + sqrt(v)*noise_scalar*spikiness) for v, noise_scalar in zip(values_no_noise, noise_scalars)] if is_gauge: for i in range(1, length): values[i] = values[i-1] + values[i] else: values = [max(v, 0) for v in values] return values def bulk_create_realmcount(property, subgroup, last_end_time, frequency, interval, values, realm): # type: (str, str, datetime, str, str, List[int], Realm) -> None end_times = time_range(last_end_time, last_end_time, frequency, len(values)) RealmCount.objects.bulk_create([ RealmCount(realm=realm, property=property, subgroup=subgroup, end_time=end_time, interval=interval, value=value) for end_time, value in zip(end_times, values) if value != 0])