mirror of
				https://github.com/zulip/zulip.git
				synced 2025-11-04 14:03:30 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			492 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			492 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
# Redis configuration file example
 | 
						|
 | 
						|
# Note on units: when memory size is needed, it is possible to specifiy
 | 
						|
# it in the usual form of 1k 5GB 4M and so forth:
 | 
						|
#
 | 
						|
# 1k => 1000 bytes
 | 
						|
# 1kb => 1024 bytes
 | 
						|
# 1m => 1000000 bytes
 | 
						|
# 1mb => 1024*1024 bytes
 | 
						|
# 1g => 1000000000 bytes
 | 
						|
# 1gb => 1024*1024*1024 bytes
 | 
						|
#
 | 
						|
# units are case insensitive so 1GB 1Gb 1gB are all the same.
 | 
						|
 | 
						|
# By default Redis does not run as a daemon. Use 'yes' if you need it.
 | 
						|
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
 | 
						|
daemonize yes
 | 
						|
 | 
						|
# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
 | 
						|
# default. You can specify a custom pid file location here.
 | 
						|
pidfile /var/run/redis/redis-server.pid
 | 
						|
 | 
						|
# Accept connections on the specified port, default is 6379.
 | 
						|
# If port 0 is specified Redis will not listen on a TCP socket.
 | 
						|
port 6379
 | 
						|
 | 
						|
# If you want you can bind a single interface, if the bind option is not
 | 
						|
# specified all the interfaces will listen for incoming connections.
 | 
						|
#
 | 
						|
bind 127.0.0.1
 | 
						|
 | 
						|
# Specify the path for the unix socket that will be used to listen for
 | 
						|
# incoming connections. There is no default, so Redis will not listen
 | 
						|
# on a unix socket when not specified.
 | 
						|
#
 | 
						|
# unixsocket /var/run/redis/redis.sock
 | 
						|
# unixsocketperm 755
 | 
						|
 | 
						|
# Close the connection after a client is idle for N seconds (0 to disable)
 | 
						|
timeout 0
 | 
						|
 | 
						|
# Set server verbosity to 'debug'
 | 
						|
# it can be one of:
 | 
						|
# debug (a lot of information, useful for development/testing)
 | 
						|
# verbose (many rarely useful info, but not a mess like the debug level)
 | 
						|
# notice (moderately verbose, what you want in production probably)
 | 
						|
# warning (only very important / critical messages are logged)
 | 
						|
loglevel notice
 | 
						|
 | 
						|
# Specify the log file name. Also 'stdout' can be used to force
 | 
						|
# Redis to log on the standard output. Note that if you use standard
 | 
						|
# output for logging but daemonize, logs will be sent to /dev/null
 | 
						|
logfile /var/log/redis/redis-server.log
 | 
						|
 | 
						|
# To enable logging to the system logger, just set 'syslog-enabled' to yes,
 | 
						|
# and optionally update the other syslog parameters to suit your needs.
 | 
						|
# syslog-enabled no
 | 
						|
 | 
						|
# Specify the syslog identity.
 | 
						|
# syslog-ident redis
 | 
						|
 | 
						|
# Specify the syslog facility.  Must be USER or between LOCAL0-LOCAL7.
 | 
						|
# syslog-facility local0
 | 
						|
 | 
						|
# Set the number of databases. The default database is DB 0, you can select
 | 
						|
# a different one on a per-connection basis using SELECT <dbid> where
 | 
						|
# dbid is a number between 0 and 'databases'-1
 | 
						|
databases 16
 | 
						|
 | 
						|
################################ SNAPSHOTTING  #################################
 | 
						|
#
 | 
						|
# Save the DB on disk:
 | 
						|
#
 | 
						|
#   save <seconds> <changes>
 | 
						|
#
 | 
						|
#   Will save the DB if both the given number of seconds and the given
 | 
						|
#   number of write operations against the DB occurred.
 | 
						|
#
 | 
						|
#   In the example below the behaviour will be to save:
 | 
						|
#   after 900 sec (15 min) if at least 1 key changed
 | 
						|
#   after 300 sec (5 min) if at least 10 keys changed
 | 
						|
#   after 60 sec if at least 10000 keys changed
 | 
						|
#
 | 
						|
#   Note: you can disable saving at all commenting all the "save" lines.
 | 
						|
 | 
						|
# save 900 1
 | 
						|
# save 300 10
 | 
						|
# save 60 10000
 | 
						|
 | 
						|
# Compress string objects using LZF when dump .rdb databases?
 | 
						|
# For default that's set to 'yes' as it's almost always a win.
 | 
						|
# If you want to save some CPU in the saving child set it to 'no' but
 | 
						|
# the dataset will likely be bigger if you have compressible values or keys.
 | 
						|
rdbcompression yes
 | 
						|
 | 
						|
# The filename where to dump the DB
 | 
						|
dbfilename dump.rdb
 | 
						|
 | 
						|
# The working directory.
 | 
						|
#
 | 
						|
# The DB will be written inside this directory, with the filename specified
 | 
						|
# above using the 'dbfilename' configuration directive.
 | 
						|
#
 | 
						|
# Also the Append Only File will be created inside this directory.
 | 
						|
#
 | 
						|
# Note that you must specify a directory here, not a file name.
 | 
						|
dir /var/lib/redis
 | 
						|
 | 
						|
################################# REPLICATION #################################
 | 
						|
 | 
						|
# Master-Slave replication. Use slaveof to make a Redis instance a copy of
 | 
						|
# another Redis server. Note that the configuration is local to the slave
 | 
						|
# so for example it is possible to configure the slave to save the DB with a
 | 
						|
# different interval, or to listen to another port, and so on.
 | 
						|
#
 | 
						|
# slaveof <masterip> <masterport>
 | 
						|
 | 
						|
# If the master is password protected (using the "requirepass" configuration
 | 
						|
# directive below) it is possible to tell the slave to authenticate before
 | 
						|
# starting the replication synchronization process, otherwise the master will
 | 
						|
# refuse the slave request.
 | 
						|
#
 | 
						|
# masterauth <master-password>
 | 
						|
 | 
						|
# When a slave lost the connection with the master, or when the replication
 | 
						|
# is still in progress, the slave can act in two different ways:
 | 
						|
#
 | 
						|
# 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
 | 
						|
#    still reply to client requests, possibly with out of data data, or the
 | 
						|
#    data set may just be empty if this is the first synchronization.
 | 
						|
#
 | 
						|
# 2) if slave-serve-stale data is set to 'no' the slave will reply with
 | 
						|
#    an error "SYNC with master in progress" to all the kind of commands
 | 
						|
#    but to INFO and SLAVEOF.
 | 
						|
#
 | 
						|
slave-serve-stale-data yes
 | 
						|
 | 
						|
# Slaves send PINGs to server in a predefined interval. It's possible to change
 | 
						|
# this interval with the repl_ping_slave_period option. The default value is 10
 | 
						|
# seconds.
 | 
						|
#
 | 
						|
# repl-ping-slave-period 10
 | 
						|
 | 
						|
# The following option sets a timeout for both Bulk transfer I/O timeout and
 | 
						|
# master data or ping response timeout. The default value is 60 seconds.
 | 
						|
#
 | 
						|
# It is important to make sure that this value is greater than the value
 | 
						|
# specified for repl-ping-slave-period otherwise a timeout will be detected
 | 
						|
# every time there is low traffic between the master and the slave.
 | 
						|
#
 | 
						|
# repl-timeout 60
 | 
						|
 | 
						|
################################## SECURITY ###################################
 | 
						|
 | 
						|
# Require clients to issue AUTH <PASSWORD> before processing any other
 | 
						|
# commands.  This might be useful in environments in which you do not trust
 | 
						|
# others with access to the host running redis-server.
 | 
						|
#
 | 
						|
# This should stay commented out for backward compatibility and because most
 | 
						|
# people do not need auth (e.g. they run their own servers).
 | 
						|
#
 | 
						|
# Warning: since Redis is pretty fast an outside user can try up to
 | 
						|
# 150k passwords per second against a good box. This means that you should
 | 
						|
# use a very strong password otherwise it will be very easy to break.
 | 
						|
#
 | 
						|
requirepass "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 | 
						|
 | 
						|
# Command renaming.
 | 
						|
#
 | 
						|
# It is possilbe to change the name of dangerous commands in a shared
 | 
						|
# environment. For instance the CONFIG command may be renamed into something
 | 
						|
# of hard to guess so that it will be still available for internal-use
 | 
						|
# tools but not available for general clients.
 | 
						|
#
 | 
						|
# Example:
 | 
						|
#
 | 
						|
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
 | 
						|
#
 | 
						|
# It is also possilbe to completely kill a command renaming it into
 | 
						|
# an empty string:
 | 
						|
#
 | 
						|
# rename-command CONFIG ""
 | 
						|
 | 
						|
################################### LIMITS ####################################
 | 
						|
 | 
						|
# Set the max number of connected clients at the same time. By default there
 | 
						|
# is no limit, and it's up to the number of file descriptors the Redis process
 | 
						|
# is able to open. The special value '0' means no limits.
 | 
						|
# Once the limit is reached Redis will close all the new connections sending
 | 
						|
# an error 'max number of clients reached'.
 | 
						|
#
 | 
						|
# maxclients 128
 | 
						|
 | 
						|
# Don't use more memory than the specified amount of bytes.
 | 
						|
# When the memory limit is reached Redis will try to remove keys
 | 
						|
# accordingly to the eviction policy selected (see maxmemmory-policy).
 | 
						|
#
 | 
						|
# If Redis can't remove keys according to the policy, or if the policy is
 | 
						|
# set to 'noeviction', Redis will start to reply with errors to commands
 | 
						|
# that would use more memory, like SET, LPUSH, and so on, and will continue
 | 
						|
# to reply to read-only commands like GET.
 | 
						|
#
 | 
						|
# This option is usually useful when using Redis as an LRU cache, or to set
 | 
						|
# an hard memory limit for an instance (using the 'noeviction' policy).
 | 
						|
#
 | 
						|
# WARNING: If you have slaves attached to an instance with maxmemory on,
 | 
						|
# the size of the output buffers needed to feed the slaves are subtracted
 | 
						|
# from the used memory count, so that network problems / resyncs will
 | 
						|
# not trigger a loop where keys are evicted, and in turn the output
 | 
						|
# buffer of slaves is full with DELs of keys evicted triggering the deletion
 | 
						|
# of more keys, and so forth until the database is completely emptied.
 | 
						|
#
 | 
						|
# In short... if you have slaves attached it is suggested that you set a lower
 | 
						|
# limit for maxmemory so that there is some free RAM on the system for slave
 | 
						|
# output buffers (but this is not needed if the policy is 'noeviction').
 | 
						|
#
 | 
						|
# maxmemory <bytes>
 | 
						|
 | 
						|
# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
 | 
						|
# is reached? You can select among five behavior:
 | 
						|
#
 | 
						|
# volatile-lru -> remove the key with an expire set using an LRU algorithm
 | 
						|
# allkeys-lru -> remove any key accordingly to the LRU algorithm
 | 
						|
# volatile-random -> remove a random key with an expire set
 | 
						|
# allkeys->random -> remove a random key, any key
 | 
						|
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
 | 
						|
# noeviction -> don't expire at all, just return an error on write operations
 | 
						|
#
 | 
						|
# Note: with all the kind of policies, Redis will return an error on write
 | 
						|
#       operations, when there are not suitable keys for eviction.
 | 
						|
#
 | 
						|
#       At the date of writing this commands are: set setnx setex append
 | 
						|
#       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
 | 
						|
#       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
 | 
						|
#       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
 | 
						|
#       getset mset msetnx exec sort
 | 
						|
#
 | 
						|
# The default is:
 | 
						|
#
 | 
						|
# maxmemory-policy volatile-lru
 | 
						|
 | 
						|
# LRU and minimal TTL algorithms are not precise algorithms but approximated
 | 
						|
# algorithms (in order to save memory), so you can select as well the sample
 | 
						|
# size to check. For instance for default Redis will check three keys and
 | 
						|
# pick the one that was used less recently, you can change the sample size
 | 
						|
# using the following configuration directive.
 | 
						|
#
 | 
						|
# maxmemory-samples 3
 | 
						|
 | 
						|
############################## APPEND ONLY MODE ###############################
 | 
						|
 | 
						|
# By default Redis asynchronously dumps the dataset on disk. If you can live
 | 
						|
# with the idea that the latest records will be lost if something like a crash
 | 
						|
# happens this is the preferred way to run Redis. If instead you care a lot
 | 
						|
# about your data and don't want to that a single record can get lost you should
 | 
						|
# enable the append only mode: when this mode is enabled Redis will append
 | 
						|
# every write operation received in the file appendonly.aof. This file will
 | 
						|
# be read on startup in order to rebuild the full dataset in memory.
 | 
						|
#
 | 
						|
# Note that you can have both the async dumps and the append only file if you
 | 
						|
# like (you have to comment the "save" statements above to disable the dumps).
 | 
						|
# Still if append only mode is enabled Redis will load the data from the
 | 
						|
# log file at startup ignoring the dump.rdb file.
 | 
						|
#
 | 
						|
# IMPORTANT: Check the BGREWRITEAOF to check how to rewrite the append
 | 
						|
# log file in background when it gets too big.
 | 
						|
 | 
						|
appendonly no
 | 
						|
 | 
						|
# The name of the append only file (default: "appendonly.aof")
 | 
						|
# appendfilename appendonly.aof
 | 
						|
 | 
						|
# The fsync() call tells the Operating System to actually write data on disk
 | 
						|
# instead to wait for more data in the output buffer. Some OS will really flush
 | 
						|
# data on disk, some other OS will just try to do it ASAP.
 | 
						|
#
 | 
						|
# Redis supports three different modes:
 | 
						|
#
 | 
						|
# no: don't fsync, just let the OS flush the data when it wants. Faster.
 | 
						|
# always: fsync after every write to the append only log . Slow, Safest.
 | 
						|
# everysec: fsync only if one second passed since the last fsync. Compromise.
 | 
						|
#
 | 
						|
# The default is "everysec" that's usually the right compromise between
 | 
						|
# speed and data safety. It's up to you to understand if you can relax this to
 | 
						|
# "no" that will will let the operating system flush the output buffer when
 | 
						|
# it wants, for better performances (but if you can live with the idea of
 | 
						|
# some data loss consider the default persistence mode that's snapshotting),
 | 
						|
# or on the contrary, use "always" that's very slow but a bit safer than
 | 
						|
# everysec.
 | 
						|
#
 | 
						|
# If unsure, use "everysec".
 | 
						|
 | 
						|
# appendfsync always
 | 
						|
appendfsync everysec
 | 
						|
# appendfsync no
 | 
						|
 | 
						|
# When the AOF fsync policy is set to always or everysec, and a background
 | 
						|
# saving process (a background save or AOF log background rewriting) is
 | 
						|
# performing a lot of I/O against the disk, in some Linux configurations
 | 
						|
# Redis may block too long on the fsync() call. Note that there is no fix for
 | 
						|
# this currently, as even performing fsync in a different thread will block
 | 
						|
# our synchronous write(2) call.
 | 
						|
#
 | 
						|
# In order to mitigate this problem it's possible to use the following option
 | 
						|
# that will prevent fsync() from being called in the main process while a
 | 
						|
# BGSAVE or BGREWRITEAOF is in progress.
 | 
						|
#
 | 
						|
# This means that while another child is saving the durability of Redis is
 | 
						|
# the same as "appendfsync none", that in pratical terms means that it is
 | 
						|
# possible to lost up to 30 seconds of log in the worst scenario (with the
 | 
						|
# default Linux settings).
 | 
						|
#
 | 
						|
# If you have latency problems turn this to "yes". Otherwise leave it as
 | 
						|
# "no" that is the safest pick from the point of view of durability.
 | 
						|
no-appendfsync-on-rewrite no
 | 
						|
 | 
						|
# Automatic rewrite of the append only file.
 | 
						|
# Redis is able to automatically rewrite the log file implicitly calling
 | 
						|
# BGREWRITEAOF when the AOF log size will growth by the specified percentage.
 | 
						|
#
 | 
						|
# This is how it works: Redis remembers the size of the AOF file after the
 | 
						|
# latest rewrite (or if no rewrite happened since the restart, the size of
 | 
						|
# the AOF at startup is used).
 | 
						|
#
 | 
						|
# This base size is compared to the current size. If the current size is
 | 
						|
# bigger than the specified percentage, the rewrite is triggered. Also
 | 
						|
# you need to specify a minimal size for the AOF file to be rewritten, this
 | 
						|
# is useful to avoid rewriting the AOF file even if the percentage increase
 | 
						|
# is reached but it is still pretty small.
 | 
						|
#
 | 
						|
# Specify a precentage of zero in order to disable the automatic AOF
 | 
						|
# rewrite feature.
 | 
						|
 | 
						|
auto-aof-rewrite-percentage 100
 | 
						|
auto-aof-rewrite-min-size 64mb
 | 
						|
 | 
						|
################################## SLOW LOG ###################################
 | 
						|
 | 
						|
# The Redis Slow Log is a system to log queries that exceeded a specified
 | 
						|
# execution time. The execution time does not include the I/O operations
 | 
						|
# like talking with the client, sending the reply and so forth,
 | 
						|
# but just the time needed to actually execute the command (this is the only
 | 
						|
# stage of command execution where the thread is blocked and can not serve
 | 
						|
# other requests in the meantime).
 | 
						|
#
 | 
						|
# You can configure the slow log with two parameters: one tells Redis
 | 
						|
# what is the execution time, in microseconds, to exceed in order for the
 | 
						|
# command to get logged, and the other parameter is the length of the
 | 
						|
# slow log. When a new command is logged the oldest one is removed from the
 | 
						|
# queue of logged commands.
 | 
						|
 | 
						|
# The following time is expressed in microseconds, so 1000000 is equivalent
 | 
						|
# to one second. Note that a negative number disables the slow log, while
 | 
						|
# a value of zero forces the logging of every command.
 | 
						|
slowlog-log-slower-than 10000
 | 
						|
 | 
						|
# There is no limit to this length. Just be aware that it will consume memory.
 | 
						|
# You can reclaim memory used by the slow log with SLOWLOG RESET.
 | 
						|
slowlog-max-len 128
 | 
						|
 | 
						|
################################ VIRTUAL MEMORY ###############################
 | 
						|
 | 
						|
### WARNING! Virtual Memory is deprecated in Redis 2.4
 | 
						|
### The use of Virtual Memory is strongly discouraged.
 | 
						|
 | 
						|
# Virtual Memory allows Redis to work with datasets bigger than the actual
 | 
						|
# amount of RAM needed to hold the whole dataset in memory.
 | 
						|
# In order to do so very used keys are taken in memory while the other keys
 | 
						|
# are swapped into a swap file, similarly to what operating systems do
 | 
						|
# with memory pages.
 | 
						|
#
 | 
						|
# To enable VM just set 'vm-enabled' to yes, and set the following three
 | 
						|
# VM parameters accordingly to your needs.
 | 
						|
 | 
						|
vm-enabled no
 | 
						|
# vm-enabled yes
 | 
						|
 | 
						|
# This is the path of the Redis swap file. As you can guess, swap files
 | 
						|
# can't be shared by different Redis instances, so make sure to use a swap
 | 
						|
# file for every redis process you are running. Redis will complain if the
 | 
						|
# swap file is already in use.
 | 
						|
#
 | 
						|
# The best kind of storage for the Redis swap file (that's accessed at random)
 | 
						|
# is a Solid State Disk (SSD).
 | 
						|
#
 | 
						|
# *** WARNING *** if you are using a shared hosting the default of putting
 | 
						|
# the swap file under /tmp is not secure. Create a dir with access granted
 | 
						|
# only to Redis user and configure Redis to create the swap file there.
 | 
						|
vm-swap-file /var/lib/redis/redis.swap
 | 
						|
 | 
						|
# vm-max-memory configures the VM to use at max the specified amount of
 | 
						|
# RAM. Everything that deos not fit will be swapped on disk *if* possible, that
 | 
						|
# is, if there is still enough contiguous space in the swap file.
 | 
						|
#
 | 
						|
# With vm-max-memory 0 the system will swap everything it can. Not a good
 | 
						|
# default, just specify the max amount of RAM you can in bytes, but it's
 | 
						|
# better to leave some margin. For instance specify an amount of RAM
 | 
						|
# that's more or less between 60 and 80% of your free RAM.
 | 
						|
vm-max-memory 0
 | 
						|
 | 
						|
# Redis swap files is split into pages. An object can be saved using multiple
 | 
						|
# contiguous pages, but pages can't be shared between different objects.
 | 
						|
# So if your page is too big, small objects swapped out on disk will waste
 | 
						|
# a lot of space. If you page is too small, there is less space in the swap
 | 
						|
# file (assuming you configured the same number of total swap file pages).
 | 
						|
#
 | 
						|
# If you use a lot of small objects, use a page size of 64 or 32 bytes.
 | 
						|
# If you use a lot of big objects, use a bigger page size.
 | 
						|
# If unsure, use the default :)
 | 
						|
vm-page-size 32
 | 
						|
 | 
						|
# Number of total memory pages in the swap file.
 | 
						|
# Given that the page table (a bitmap of free/used pages) is taken in memory,
 | 
						|
# every 8 pages on disk will consume 1 byte of RAM.
 | 
						|
#
 | 
						|
# The total swap size is vm-page-size * vm-pages
 | 
						|
#
 | 
						|
# With the default of 32-bytes memory pages and 134217728 pages Redis will
 | 
						|
# use a 4 GB swap file, that will use 16 MB of RAM for the page table.
 | 
						|
#
 | 
						|
# It's better to use the smallest acceptable value for your application,
 | 
						|
# but the default is large in order to work in most conditions.
 | 
						|
vm-pages 134217728
 | 
						|
 | 
						|
# Max number of VM I/O threads running at the same time.
 | 
						|
# This threads are used to read/write data from/to swap file, since they
 | 
						|
# also encode and decode objects from disk to memory or the reverse, a bigger
 | 
						|
# number of threads can help with big objects even if they can't help with
 | 
						|
# I/O itself as the physical device may not be able to couple with many
 | 
						|
# reads/writes operations at the same time.
 | 
						|
#
 | 
						|
# The special value of 0 turn off threaded I/O and enables the blocking
 | 
						|
# Virtual Memory implementation.
 | 
						|
vm-max-threads 4
 | 
						|
 | 
						|
############################### ADVANCED CONFIG ###############################
 | 
						|
# Hashes are encoded in a special way (much more memory efficient) when they
 | 
						|
# have at max a given numer of elements, and the biggest element does not
 | 
						|
# exceed a given threshold. You can configure this limits with the following
 | 
						|
# configuration directives.
 | 
						|
hash-max-zipmap-entries 512
 | 
						|
hash-max-zipmap-value 64
 | 
						|
 | 
						|
# Similarly to hashes, small lists are also encoded in a special way in order
 | 
						|
# to save a lot of space. The special representation is only used when
 | 
						|
# you are under the following limits:
 | 
						|
list-max-ziplist-entries 512
 | 
						|
list-max-ziplist-value 64
 | 
						|
 | 
						|
# Sets have a special encoding in just one case: when a set is composed
 | 
						|
# of just strings that happens to be integers in radix 10 in the range
 | 
						|
# of 64 bit signed integers.
 | 
						|
# The following configuration setting sets the limit in the size of the
 | 
						|
# set in order to use this special memory saving encoding.
 | 
						|
set-max-intset-entries 512
 | 
						|
 | 
						|
# Similarly to hashes and lists, sorted sets are also specially encoded in
 | 
						|
# order to save a lot of space. This encoding is only used when the length and
 | 
						|
# elements of a sorted set are below the following limits:
 | 
						|
zset-max-ziplist-entries 128
 | 
						|
zset-max-ziplist-value 64
 | 
						|
 | 
						|
# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
 | 
						|
# order to help rehashing the main Redis hash table (the one mapping top-level
 | 
						|
# keys to values). The hash table implementation redis uses (see dict.c)
 | 
						|
# performs a lazy rehashing: the more operation you run into an hash table
 | 
						|
# that is rhashing, the more rehashing "steps" are performed, so if the
 | 
						|
# server is idle the rehashing is never complete and some more memory is used
 | 
						|
# by the hash table.
 | 
						|
#
 | 
						|
# The default is to use this millisecond 10 times every second in order to
 | 
						|
# active rehashing the main dictionaries, freeing memory when possible.
 | 
						|
#
 | 
						|
# If unsure:
 | 
						|
# use "activerehashing no" if you have hard latency requirements and it is
 | 
						|
# not a good thing in your environment that Redis can reply form time to time
 | 
						|
# to queries with 2 milliseconds delay.
 | 
						|
#
 | 
						|
# use "activerehashing yes" if you don't have such hard requirements but
 | 
						|
# want to free memory asap when possible.
 | 
						|
activerehashing yes
 | 
						|
 | 
						|
################################## INCLUDES ###################################
 | 
						|
 | 
						|
# Include one or more other config files here.  This is useful if you
 | 
						|
# have a standard template that goes to all redis server but also need
 | 
						|
# to customize a few per-server settings.  Include files can include
 | 
						|
# other files, so use this wisely.
 | 
						|
#
 | 
						|
# include /path/to/local.conf
 | 
						|
# include /path/to/other.conf
 |