mirror of
				https://github.com/zulip/zulip.git
				synced 2025-11-03 21:43:21 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			205 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			205 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import hashlib
 | 
						|
import heapq
 | 
						|
import itertools
 | 
						|
import re
 | 
						|
import secrets
 | 
						|
from itertools import zip_longest
 | 
						|
from time import sleep
 | 
						|
from typing import Any, Callable, Iterator, List, Optional, Sequence, Set, Tuple, TypeVar
 | 
						|
 | 
						|
from django.conf import settings
 | 
						|
 | 
						|
T = TypeVar("T")
 | 
						|
 | 
						|
 | 
						|
def statsd_key(val: str, clean_periods: bool = False) -> str:
 | 
						|
    if ":" in val:
 | 
						|
        val = val.split(":")[0]
 | 
						|
    val = val.replace("-", "_")
 | 
						|
    if clean_periods:
 | 
						|
        val = val.replace(".", "_")
 | 
						|
 | 
						|
    return val
 | 
						|
 | 
						|
 | 
						|
class StatsDWrapper:
 | 
						|
    """Transparently either submit metrics to statsd
 | 
						|
    or do nothing without erroring out"""
 | 
						|
 | 
						|
    # Backported support for gauge deltas
 | 
						|
    # as our statsd server supports them but supporting
 | 
						|
    # pystatsd is not released yet
 | 
						|
    def _our_gauge(self, stat: str, value: float, rate: float = 1, delta: bool = False) -> None:
 | 
						|
        """Set a gauge value."""
 | 
						|
        from django_statsd.clients import statsd
 | 
						|
 | 
						|
        if delta:
 | 
						|
            value_str = f"{value:+g}|g"
 | 
						|
        else:
 | 
						|
            value_str = f"{value:g}|g"
 | 
						|
        statsd._send(stat, value_str, rate)
 | 
						|
 | 
						|
    def __getattr__(self, name: str) -> Any:
 | 
						|
        # Hand off to statsd if we have it enabled
 | 
						|
        # otherwise do nothing
 | 
						|
        if name in ["timer", "timing", "incr", "decr", "gauge"]:
 | 
						|
            if settings.STATSD_HOST != "":
 | 
						|
                from django_statsd.clients import statsd
 | 
						|
 | 
						|
                if name == "gauge":
 | 
						|
                    return self._our_gauge
 | 
						|
                else:
 | 
						|
                    return getattr(statsd, name)
 | 
						|
            else:
 | 
						|
                return lambda *args, **kwargs: None
 | 
						|
 | 
						|
        raise AttributeError
 | 
						|
 | 
						|
 | 
						|
statsd = StatsDWrapper()
 | 
						|
 | 
						|
# Runs the callback with slices of all_list of a given batch_size
 | 
						|
def run_in_batches(
 | 
						|
    all_list: Sequence[T],
 | 
						|
    batch_size: int,
 | 
						|
    callback: Callable[[Sequence[T]], None],
 | 
						|
    sleep_time: int = 0,
 | 
						|
    logger: Optional[Callable[[str], None]] = None,
 | 
						|
) -> None:
 | 
						|
    if len(all_list) == 0:
 | 
						|
        return
 | 
						|
 | 
						|
    limit = (len(all_list) // batch_size) + 1
 | 
						|
    for i in range(limit):
 | 
						|
        start = i * batch_size
 | 
						|
        end = (i + 1) * batch_size
 | 
						|
        if end >= len(all_list):
 | 
						|
            end = len(all_list)
 | 
						|
        batch = all_list[start:end]
 | 
						|
 | 
						|
        if logger:
 | 
						|
            logger(f"Executing {end-start} in batch {i+1} of {limit}")
 | 
						|
 | 
						|
        callback(batch)
 | 
						|
 | 
						|
        if i != limit - 1:
 | 
						|
            sleep(sleep_time)
 | 
						|
 | 
						|
 | 
						|
def make_safe_digest(string: str, hash_func: Callable[[bytes], Any] = hashlib.sha1) -> str:
 | 
						|
    """
 | 
						|
    return a hex digest of `string`.
 | 
						|
    """
 | 
						|
    # hashlib.sha1, md5, etc. expect bytes, so non-ASCII strings must
 | 
						|
    # be encoded.
 | 
						|
    return hash_func(string.encode("utf-8")).hexdigest()
 | 
						|
 | 
						|
 | 
						|
def log_statsd_event(name: str) -> None:
 | 
						|
    """
 | 
						|
    Sends a single event to statsd with the desired name and the current timestamp
 | 
						|
 | 
						|
    This can be used to provide vertical lines in generated graphs,
 | 
						|
    for example when doing a prod deploy, bankruptcy request, or
 | 
						|
    other one-off events
 | 
						|
 | 
						|
    Note that to draw this event as a vertical line in graphite
 | 
						|
    you can use the drawAsInfinite() command
 | 
						|
    """
 | 
						|
    event_name = f"events.{name}"
 | 
						|
    statsd.incr(event_name)
 | 
						|
 | 
						|
 | 
						|
def generate_api_key() -> str:
 | 
						|
    api_key = ""
 | 
						|
    while len(api_key) < 32:
 | 
						|
        # One iteration suffices 99.4992% of the time.
 | 
						|
        api_key += secrets.token_urlsafe(3 * 9).replace("_", "").replace("-", "")
 | 
						|
    return api_key[:32]
 | 
						|
 | 
						|
 | 
						|
def has_api_key_format(key: str) -> bool:
 | 
						|
    return bool(re.fullmatch(r"([A-Za-z0-9]){32}", key))
 | 
						|
 | 
						|
 | 
						|
def query_chunker(
 | 
						|
    queries: List[Any],
 | 
						|
    id_collector: Optional[Set[int]] = None,
 | 
						|
    chunk_size: int = 1000,
 | 
						|
    db_chunk_size: Optional[int] = None,
 | 
						|
) -> Iterator[Any]:
 | 
						|
    """
 | 
						|
    This merges one or more Django ascending-id queries into
 | 
						|
    a generator that returns chunks of chunk_size row objects
 | 
						|
    during each yield, preserving id order across all results..
 | 
						|
 | 
						|
    Queries should satisfy these conditions:
 | 
						|
        - They should be Django filters.
 | 
						|
        - They should return Django objects with "id" attributes.
 | 
						|
        - They should be disjoint.
 | 
						|
 | 
						|
    The generator also populates id_collector, which we use
 | 
						|
    internally to enforce unique ids, but which the caller
 | 
						|
    can pass in to us if they want the side effect of collecting
 | 
						|
    all ids.
 | 
						|
    """
 | 
						|
    if db_chunk_size is None:
 | 
						|
        db_chunk_size = chunk_size // len(queries)
 | 
						|
 | 
						|
    assert db_chunk_size >= 2
 | 
						|
    assert chunk_size >= 2
 | 
						|
 | 
						|
    if id_collector is not None:
 | 
						|
        assert len(id_collector) == 0
 | 
						|
    else:
 | 
						|
        id_collector = set()
 | 
						|
 | 
						|
    def chunkify(q: Any, i: int) -> Iterator[Tuple[int, int, Any]]:
 | 
						|
        q = q.order_by("id")
 | 
						|
        min_id = -1
 | 
						|
        while True:
 | 
						|
            rows = list(q.filter(id__gt=min_id)[0:db_chunk_size])
 | 
						|
            if len(rows) == 0:
 | 
						|
                break
 | 
						|
            for row in rows:
 | 
						|
                yield (row.id, i, row)
 | 
						|
            min_id = rows[-1].id
 | 
						|
 | 
						|
    iterators = [chunkify(q, i) for i, q in enumerate(queries)]
 | 
						|
    merged_query = heapq.merge(*iterators)
 | 
						|
 | 
						|
    while True:
 | 
						|
        tup_chunk = list(itertools.islice(merged_query, 0, chunk_size))
 | 
						|
        if len(tup_chunk) == 0:
 | 
						|
            break
 | 
						|
 | 
						|
        # Do duplicate-id management here.
 | 
						|
        tup_ids = {tup[0] for tup in tup_chunk}
 | 
						|
        assert len(tup_ids) == len(tup_chunk)
 | 
						|
        assert len(tup_ids.intersection(id_collector)) == 0
 | 
						|
        id_collector.update(tup_ids)
 | 
						|
 | 
						|
        yield [row for row_id, i, row in tup_chunk]
 | 
						|
 | 
						|
 | 
						|
def process_list_in_batches(
 | 
						|
    lst: List[Any], chunk_size: int, process_batch: Callable[[List[Any]], None]
 | 
						|
) -> None:
 | 
						|
    offset = 0
 | 
						|
 | 
						|
    while True:
 | 
						|
        items = lst[offset : offset + chunk_size]
 | 
						|
        if not items:
 | 
						|
            break
 | 
						|
        process_batch(items)
 | 
						|
        offset += chunk_size
 | 
						|
 | 
						|
 | 
						|
def split_by(array: List[Any], group_size: int, filler: Any) -> List[List[Any]]:
 | 
						|
    """
 | 
						|
    Group elements into list of size `group_size` and fill empty cells with
 | 
						|
    `filler`. Recipe from https://docs.python.org/3/library/itertools.html
 | 
						|
    """
 | 
						|
    args = [iter(array)] * group_size
 | 
						|
    return list(map(list, zip_longest(*args, fillvalue=filler)))
 |