mirror of
https://github.com/zulip/zulip.git
synced 2025-11-01 20:44:04 +00:00
analytics: Add initial fixture for testing views.
This commit is contained in:
69
analytics/lib/fixtures.py
Normal file
69
analytics/lib/fixtures.py
Normal file
@@ -0,0 +1,69 @@
|
||||
from __future__ import division, absolute_import
|
||||
|
||||
from zerver.models import Realm, UserProfile, Stream, Message
|
||||
from analytics.models import InstallationCount, RealmCount, UserCount, StreamCount
|
||||
from analytics.lib.counts import CountStat
|
||||
from analytics.lib.time_utils import time_range
|
||||
|
||||
from datetime import datetime
|
||||
from math import sqrt
|
||||
from random import gauss, random, seed
|
||||
|
||||
from six.moves import range, zip
|
||||
|
||||
def generate_time_series_data(length, business_hours_base, non_business_hours_base,
|
||||
growth=1, autocorrelation=0, spikiness=1, holiday_rate=0,
|
||||
frequency=CountStat.HOUR, is_gauge=False):
|
||||
# type: (int, float, float, float, float, float, float, str, bool) -> List[int]
|
||||
"""
|
||||
Generate semi-realistic looking time series data for testing analytics graphs.
|
||||
|
||||
length -- Number of data points returned.
|
||||
business_hours_base -- Average value during a business hour (or day) at beginning of
|
||||
time series, if frequency is CountStat.HOUR (CountStat.DAY, respectively).
|
||||
non_business_hours_base -- The above, for non-business hours/days.
|
||||
growth -- Ratio between average values at end of time series and beginning of time series.
|
||||
autocorrelation -- Makes neighboring data points look more like each other. At 0 each
|
||||
point is unaffected by the previous point, and at 1 each point is a deterministic
|
||||
function of the previous point.
|
||||
spikiness -- 0 means no randomness (other than holiday_rate), higher values increase
|
||||
the variance.
|
||||
holiday_rate -- Fraction of points randomly set to 0.
|
||||
frequency -- Should be CountStat.HOUR or CountStat.DAY.
|
||||
is_gauge -- If True, return partial sum of the series.
|
||||
"""
|
||||
if length < 2:
|
||||
raise ValueError("length must be at least 2")
|
||||
if frequency == CountStat.HOUR:
|
||||
seasonality = [non_business_hours_base] * 24 * 7
|
||||
for day in range(5):
|
||||
for hour in range(8):
|
||||
seasonality[24*day + hour] = business_hours_base
|
||||
elif frequency == CountStat.DAY:
|
||||
seasonality = [business_hours_base]*5 + [non_business_hours_base]*2
|
||||
else:
|
||||
raise ValueError("Unknown frequency: %s" % (frequency,))
|
||||
growth_base = growth ** (1. / (length-1))
|
||||
values_no_noise = [seasonality[i % len(seasonality)] * (growth_base**i) for i in range(length)]
|
||||
|
||||
seed(26)
|
||||
noise_scalars = [gauss(0, 1)]
|
||||
for i in range(1, length):
|
||||
noise_scalars.append(noise_scalars[-1]*autocorrelation + gauss(0, 1)*(1-autocorrelation))
|
||||
|
||||
values = [0 if random() < holiday_rate else int(v + sqrt(v)*noise_scalar*spikiness)
|
||||
for v, noise_scalar in zip(values_no_noise, noise_scalars)]
|
||||
if is_gauge:
|
||||
for i in range(1, length):
|
||||
values[i] = values[i-1] + values[i]
|
||||
else:
|
||||
values = [max(v, 0) for v in values]
|
||||
return values
|
||||
|
||||
def bulk_create_realmcount(property, subgroup, last_end_time, frequency, interval, values, realm):
|
||||
# type: (str, str, datetime, str, str, List[int], Realm) -> None
|
||||
end_times = time_range(last_end_time, last_end_time, frequency, len(values))
|
||||
RealmCount.objects.bulk_create([
|
||||
RealmCount(realm=realm, property=property, subgroup=subgroup, end_time=end_time,
|
||||
interval=interval, value=value)
|
||||
for end_time, value in zip(end_times, values) if value != 0])
|
||||
57
analytics/management/commands/populate_analytics_db.py
Normal file
57
analytics/management/commands/populate_analytics_db.py
Normal file
@@ -0,0 +1,57 @@
|
||||
from __future__ import absolute_import, print_function
|
||||
|
||||
from argparse import ArgumentParser
|
||||
|
||||
from django.core.management.base import BaseCommand
|
||||
from django.utils import timezone
|
||||
|
||||
from analytics.models import InstallationCount, RealmCount, UserCount, StreamCount
|
||||
from analytics.lib.counts import COUNT_STATS, CountStat, do_drop_all_analytics_tables
|
||||
from analytics.lib.fixtures import generate_time_series_data, bulk_create_realmcount
|
||||
from zerver.lib.timestamp import floor_to_day
|
||||
from zerver.models import Realm, UserProfile, Stream, Message
|
||||
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Text
|
||||
|
||||
class Command(BaseCommand):
|
||||
help = """Populates analytics tables with randomly generated data."""
|
||||
|
||||
def add_arguments(self, parser):
|
||||
# type: (ArgumentParser) -> None
|
||||
parser.add_argument('--clear-existing',
|
||||
action='store_true',
|
||||
help="Clear analytics tables before populating. If you run "
|
||||
"this twice with this flag, the main change will be in the timestamps "
|
||||
"of all the created database objects.")
|
||||
|
||||
def create_user(self, email, full_name, is_staff, date_joined, realm):
|
||||
# type: (Text, Text, Text, bool, datetime, Realm) -> UserProfile
|
||||
return UserProfile.objects.get_or_create(
|
||||
email=email, full_name=full_name, is_staff=is_staff,
|
||||
realm=realm, short_name=full_name, pointer=-1, last_pointer_updater='none',
|
||||
api_key='42', defaults={'date_joined': date_joined})[0]
|
||||
|
||||
def handle(self, *args, **options):
|
||||
# type: (*Any, **Any) -> None
|
||||
if options['clear_existing']:
|
||||
do_drop_all_analytics_tables()
|
||||
# I believe this also deletes any objects with this realm as a foreign key
|
||||
Realm.objects.filter(string_id='analytics').delete()
|
||||
|
||||
installation_time = timezone.now() - timedelta(days=100)
|
||||
realm, created = Realm.objects.get_or_create(
|
||||
string_id='analytics', name='Analytics', domain='analytics.ds',
|
||||
defaults={'date_created': installation_time})
|
||||
self.create_user('shylock@analytics.ds', 'Shylock', True, installation_time, realm)
|
||||
|
||||
stat = COUNT_STATS['active_users:is_bot']
|
||||
if not RealmCount.objects.filter(property=stat.property).exists():
|
||||
last_end_time = floor_to_day(timezone.now())
|
||||
human_data = generate_time_series_data(100, 30, 10, growth=5, autocorrelation=.5,
|
||||
spikiness=3, frequency=CountStat.DAY)
|
||||
bot_data = generate_time_series_data(100, 20, 20, growth=3, frequency=CountStat.DAY)
|
||||
bulk_create_realmcount(stat.property, 'false', last_end_time,
|
||||
stat.frequency, stat.interval, human_data, realm)
|
||||
bulk_create_realmcount(stat.property, 'true', last_end_time,
|
||||
stat.frequency, stat.interval, bot_data, realm)
|
||||
Reference in New Issue
Block a user